Skip to main content Accessibility help
×
Home

THE COHOMOLOGY RING OF ORBIT SPACES OF FREE $\mathbb{Z}_{2}$ -ACTIONS ON SOME DOLD MANIFOLDS

  • ANA MARIA M. MORITA (a1), DENISE DE MATTOS (a2) and PEDRO L. Q. PERGHER (a3)

Abstract

We determine the possible $\mathbb{Z}_{2}$ -cohomology rings of orbit spaces of free actions of $\mathbb{Z}_{2}$ (or fixed point free involutions) on the Dold manifold $P(1,n)$ , where $n$ is an odd natural number.

Copyright

Corresponding author

References

Hide All
[1] Borel, A., Seminar on Transformation Groups (Princeton University Press, Princeton, NJ, 1960).
[2] Bredon, G. E., Introduction to Compact Transformation Groups (Academic Press, New York, 1972).
[3] Conner, P. E. and Floyd, E. E., Differentiable Periodic Maps, Ergebnisse Series, 33 (Springer, Berlin–Heidelberg, 1964).
[4] Davis, D. M., ‘Projective product spaces’, J. Topol. 3 (2010), 265279.
[5] Dold, A., ‘Erzeugende der Thomschen Algebra N’, Math. Z. 65 (1956), 2535.
[6] Khare, S. S., ‘On Dold manifolds’, Topology Appl. 33 (1989), 297307.
[7] McCleary, J., A User’s Guide to Spectral Sequences, 2nd edn (Cambridge University Press, New York, 2001).
[8] Pergher, P. L. Q., Singh, H. K. and Singh, T. B., ‘On Z2 and S1 free actions on spaces of cohomology type (a, b)’, Houston J. Math. 36(1) (2010), 137146.
[9] Spanier, E. H., Algebraic Topology (McGraw-Hill, New York, 1966).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed