Skip to main content Accessibility help
×
Home

BETTI NUMBERS FOR CERTAIN COHEN–MACAULAY TANGENT CONES

  • MESUT ŞAHİN (a1) and NİL ŞAHİN (a2)

Abstract

We compute Betti numbers for a Cohen–Macaulay tangent cone of a monomial curve in the affine $4$ -space corresponding to a pseudo-symmetric numerical semigroup. As a byproduct, we also show that for these semigroups, being of homogeneous type and homogeneous are equivalent properties.

Copyright

Corresponding author

Footnotes

Hide All

The authors were supported by the project 114F094 under the program 1001 of the Scientific and Technological Research Council of Turkey.

Footnotes

References

Hide All
[1] Barucci, V., Fröberg, R. and Şahin, M., ‘On free resolutions of some semigroup rings’, J. Pure Appl. Algebra 218(6) (2014), 11071116.
[2] Buchsbaum, D. and Eisenbud, D., ‘What makes a complex exact?’, J. Algebra 25 (1973), 259268.
[3] Eto, K., ‘Almost Gorenstein monomial curves in affine four space’, J. Algebra 488 (2017), 362387.
[4] Greuel, G.-M. and Pfister, G., A Singular Introduction to Commutative Algebra (Springer, Berlin–Heidelberg, 2002).
[5] Greuel, G.-M., Pfister, G. and Schönemann, H., ‘Singular 2.0. A computer algebra system for polynomial computations’, Centre for Computer Algebra, University of Kaiserslautern, 2001, http://www.singular.uni-kl.de.
[6] Herzog, J., Rossi, M. E. and Valla, G., ‘On the depth of the symmetric algebra’, Trans. Amer. Math. Soc. 296(2) (1986), 577606.
[7] Herzog, J. and Stamate, D. I., ‘On the defining equations of the tangent cone of a numerical semigroup ring’, J. Algebra 418 (2014), 828.
[8] Jafari, R. and Zarzuela Armengou, S., ‘Homogeneous numerical semigroups’, Semigroup Forum (2018), doi:10.1007/s00233-018-9941-6.
[9] Komeda, J., ‘On the existence of Weierstrass points with a certain semigroup’, Tsukuba J. Math. 6(2) (1982), 237270.
[10] Mete, P. and Zengin, E. E., ‘Minimal free resolutions of the tangent cones of Gorenstein monomial curves’, arXiv:1801.04956.
[11] Şahi̇n, M. and Şahi̇n, N., ‘On pseudo symmetric monomial curves’, Comm. Algebra 46(6) (2018), 25612573.
[12] Stamate, D. I., ‘Betti numbers for numerical semigroup rings’, in: Multigraded Algebra and Applications – NSA 24, 2016, Springer Proceedings in Mathematics and Statistics, 238 (eds. Ene, V. and Miller, E.) (Springer, Cham, 2018).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

BETTI NUMBERS FOR CERTAIN COHEN–MACAULAY TANGENT CONES

  • MESUT ŞAHİN (a1) and NİL ŞAHİN (a2)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed