Skip to main content Accessibility help
×
Home

ARENS PRODUCTS, ARENS REGULARITY AND RELATED PROBLEMS

  • RUKI MATSUI (a1) and YUJI TAKAHASHI (a2)

Abstract

We study the second dual algebra of a Banach algebra and related problems. We resolve some questions raised by Ülger, which are related to Arens products. We then discuss a question of Gulick on the radical of the second dual algebra of the group algebra of a discrete abelian group and give an application of Arens regularity to Fourier and Fourier–Stieltjes transforms.

Copyright

Corresponding author

References

Hide All
[1] Arens, R., ‘Operations induced in function classes’, Monatsh. Math. 55(1951) 119.
[2] Arens, R., ‘The adjoint of a bilinear operation’, Proc. Amer. Math. Soc. 2(1951) 839848.
[3] Bonsall, F. F. and Duncan, J., Complete Normed Algebras (Springer, Berlin–Heidelberg–New York, 1973).
[4] Civin, P. and Yood, B., ‘The second conjugate space of a Banach algebra as an algebra’, Pacific J. Math. 11(1961) 847870.
[5] Dales, H. G., Banach Algebras and Automatic Continuity (Clarendon Press, Oxford, 2000).
[6] Dales, H. G. and Lau, A. T.-M., ‘The second duals of Beurling algebras’, Mem. Amer. Math. Soc. 177(2005) 1191.
[7] Diestel, J., ‘A survey of results related to the Dunford–Pettis property’, Contemp. Math. 2(1980) 1560.
[8] Duncan, J. and Hosseiniun, S. A. R., ‘The second dual of a Banach algebra’, Proc. Roy. Soc. Edinburgh Sect. A 84(1979) 309325.
[9] Fell, J. M. G. and Doran, R. S., Representations of ∗-Algebras, Locally Compact Groups, and Banach ∗-Algebraic Bundles I (Academic Press, Boston, MA, 1988).
[10] Friedberg, S. H., ‘The Fourier transform is onto only when the group is finite’, Proc. Amer. Math. Soc. 27(1971) 421422.
[11] Graham, C. C., ‘The Fourier transform is onto only when the group is finite’, Proc. Amer. Math. Soc. 38(1973) 365366.
[12] Granirer, E. E., ‘On amenable semigroups with a finite-dimensional set of invariant means I’, Illinois J. Math. 7(1963) 3248.
[13] Granirer, E. E., ‘The radical of L (G) ’, Proc. Amer. Math. Soc. 41(1973) 321324.
[14] Gulick, S. L., ‘Commutativity and ideals in the biduals of topological algebras’, Pacific J. Math. 18(1966) 121137.
[15] Hewitt, E. and Ross, K. A., Abstract Harmonic Analysis II (Springer, Berlin–Heidelberg–New York, 1970).
[16] Palmer, T. W., Banach Algebras and the General Theory of ∗-Algebras I (Cambridge University Press, Cambridge, 1994).
[17] Paterson, A. L. T., Amenability (American Mathematical Society, Providence, RI, 1988).
[18] Rajagopalan, M., ‘Fourier transform in locally compact groups’, Acta Sci. Math. (Szeged) 25(1964) 8689.
[19] Sakai, S., ‘Weakly compact operators on operator algebras’, Pacific J. Math. 14(1964) 659664.
[20] Segal, I. E., ‘The class of functions which are absolutely convergent Fourier transforms’, Acta Sci. Math. (Szeged). 12(1950) 157161.
[21] Ülger, A., ‘Weakly compact bilinear forms and Arens regularity’, Proc. Amer. Math. Soc. 101(1987) 697704.
[22] Ülger, A., ‘Arens regularity sometimes implies the RNP’, Pacific J. Math. 143(1990) 377399.
[23] Young, N. J., ‘The irregularity of multiplication in group algebras’, Quart. J. Math. Oxford. 24(1973) 5962.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

ARENS PRODUCTS, ARENS REGULARITY AND RELATED PROBLEMS

  • RUKI MATSUI (a1) and YUJI TAKAHASHI (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed