Skip to main content Accessibility help
×
Home

THE ANNIHILATOR OF TENSOR SPACE IN THE $q$ -ROOK MONOID ALGEBRA

  • ZHANKUI XIAO (a1)

Abstract

In this paper, we give an explicit construction of a quasi-idempotent in the $q$ -rook monoid algebra $R_{n}(q)$ and show that it generates the whole annihilator of the tensor space $U^{\otimes n}$ in $R_{n}(q)$ .

Copyright

References

Hide All
[1] Dieng, M., Halverson, T. and Poladian, V., ‘Character formulas for q-rook monoid algebras’, J. Algebraic Combin. 17 (2003), 99123.
[2] East, J., ‘Cellular algebras and inverse semigroups’, J. Algebra 296 (2006), 505519.
[3] Graham, J. J. and Lehrer, G. I., ‘Cellular algebras’, Invent. Math. 123 (1996), 134.
[4] Grood, C., ‘A Specht module analog for the rook monoid’, Electron. J. Combin. 9 (2002), Article ID #R2, 10 pages.
[5] Halverson, T., ‘Representations of the q-rook monoid’, J. Algebra 273 (2004), 227251.
[6] Halverson, T. and Ram, A., ‘ q-rook monoid algebras, Hecke algebras, and Schur–Weyl duality’, J. Math. Sci. 121 (2004), 24192436; translated from Zap. Nauch. Sem. POMI 283 (2001), 224–250.
[7] Hu, J., ‘Schur–Weyl reciprocity between quantum groups and Hecke algebras of type G (r, 1, n)’, Math. Z. 238 (2001), 505521.
[8] Hu, J. and Xiao, Z.-K., ‘On tensor spaces for Birman–Murakami–Wenzl algebras’, J. Algebra 324 (2010), 28932922.
[9] Lehrer, G. I. and Zhang, R. B., ‘Strongly multiplicity free modules for Lie algebras and quantized groups’, J. Algebra 306 (2006), 138174.
[10] Lehrer, G. I. and Zhang, R. B., ‘The second fundamental theorem of invariant theory for the orthogonal group’, Ann. of Math. (2) 176 (2012), 20312054.
[11] Lehrer, G. I. and Zhang, R. B., ‘The Brauer category and invariant theory’, J. Eur. Math. Soc. (JEMS) 17 (2015), 23112351.
[12] Mathas, A., Iwahori–Hecke algebras and Schur algebras of the symmetric group, University Lecture Series, 15 (Amreican Mathematical Society, Providence, RI, 1999).
[13] Paget, R., ‘Representation theory of q-rook monoid algebras’, J. Algebraic Combin. 24 (2006), 239252.
[14] Sakamoto, S. and Shoji, T., ‘Schur–Weyl reciprocity for Ariki–Koike algebras’, J. Algebra 221 (1999), 293314.
[15] Solomon, L., ‘The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field’, Geom. Dedicata 36 (1990), 1549.
[16] Solomon, L., ‘Representations of the rook monoid’, J. Algebra 256 (2002), 309342.
[17] Solomon, L., ‘The Iwahori algebra of M n (F q ), a presentation and a representation on tensor space’, J. Algebra 273 (2004), 206226.
[18] Xiao, Z.-K., ‘On tensor spaces for rook monoid algebras’, Acta Math. Sinica, English Series 32 (2016), 607620.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

THE ANNIHILATOR OF TENSOR SPACE IN THE $q$ -ROOK MONOID ALGEBRA

  • ZHANKUI XIAO (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed