Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-6zfdk Total loading time: 0.297 Render date: 2021-04-15T18:07:16.768Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

FINDING INVOLUTIONS WITH SMALL SUPPORT

Published online by Cambridge University Press:  11 January 2016

ALICE C. NIEMEYER
Affiliation:
Lehrstuhl B für Mathematik, RWTH Aachen University, Pontdriesch 10–16, 52062 Aachen, Germany email alice.niemeyer@math.rwth-aachen.de
TOMASZ POPIEL
Affiliation:
Centre for the Mathematics of Symmetry and Computation, School of Mathematics and Statistics, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia email tomasz.popiel@uwa.edu.au

Abstract

We show that the proportion of permutations $g$ in $S_{\!n}$ or $A_{n}$ such that $g$ has even order and $g^{|g|/2}$ is an involution with support of cardinality at most $\lceil n^{{\it\varepsilon}}\rceil$ is at least a constant multiple of ${\it\varepsilon}$ . Using this result, we obtain the same conclusion for elements in a classical group of natural dimension $n$ in odd characteristic that have even order and power up to an involution with $(-1)$ -eigenspace of dimension at most $\lceil n^{{\it\varepsilon}}\rceil$ for a linear or unitary group, or $2\lceil \lfloor n/2\rfloor ^{{\it\varepsilon}}\rceil$ for a symplectic or orthogonal group.

Type
Research Article
Copyright
© 2016 Australian Mathematical Publishing Association Inc. 

Access options

Get access to the full version of this content by using one of the access options below.

References

Beals, R., Leedham-Green, C. R., Niemeyer, A. C., Praeger, C. E. and Seress, Á., ‘Permutations with restricted cycle structure and an algorithmic application’, Combin. Probab. Comput. 11 (2002), 447464.CrossRefGoogle Scholar
Beals, R., Leedham-Green, C. R., Niemeyer, A. C., Praeger, C. E. and Seress, Á., ‘A black-box group algorithm for recognizing finite symmetric and alternating groups. I’, Trans. Amer. Math. Soc. 355 (2003), 20972113.CrossRefGoogle Scholar
Beals, R., Leedham-Green, C. R., Niemeyer, A. C., Praeger, C. E. and Seress, Á., ‘Constructive recognition of finite alternating and symmetric groups acting as matrix groups on their natural permutation modules’, J. Algebra 292 (2005), 446.CrossRefGoogle Scholar
Bratus, S. and Pak, I., ‘Fast constructive recognition of a black box group isomorphic to S n or A n using Goldbach’s conjecture’, J. Symbolic Comput. 29 (2000), 3357.CrossRefGoogle Scholar
Bray, J. N., ‘An improved method for generating the centralizer of an involution’, Arch. Math. (Basel) 74 (2000), 241245.CrossRefGoogle Scholar
Jambor, S., Leuner, M., Niemeyer, A. C. and Plesken, W., ‘Fast recognition of alternating groups of unknown degree’, J. Algebra 392 (2013), 315335.CrossRefGoogle Scholar
Lübeck, F., Niemeyer, A. C. and Praeger, C. E., ‘Finding involutions in finite Lie type groups of odd characteristic’, J. Algebra 321 (2009), 33973417.CrossRefGoogle Scholar
Niemeyer, A. C., Popiel, T., Praeger, C. E. and Yalçınkaya, Ş., ‘On semiregular permutations of a finite set’, Math. Comp. 81 (2012), 605622.CrossRefGoogle Scholar
O’Brien, E. A., ‘Algorithms for matrix groups’, in: Groups St. Andrews 2009 in Bath, II, London Mathematical Society Lecture Note Series, 388 (Cambridge University Press, Cambridge, 2011), 297323.CrossRefGoogle Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 57 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 15th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

FINDING INVOLUTIONS WITH SMALL SUPPORT
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

FINDING INVOLUTIONS WITH SMALL SUPPORT
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

FINDING INVOLUTIONS WITH SMALL SUPPORT
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *