Skip to main content Accessibility help
×
Home

GEOMETRISATION OF FIRST-ORDER LOGIC

  • ROY DYCKHOFF (a1) and SARA NEGRI (a2)

Abstract

That every first-order theory has a coherent conservative extension is regarded by some as obvious, even trivial, and by others as not at all obvious, but instead remarkable and valuable; the result is in any case neither sufficiently well-known nor easily found in the literature. Various approaches to the result are presented and discussed in detail, including one inspired by a problem in the proof theory of intermediate logics that led us to the proof of the present paper. It can be seen as a modification of Skolem’s argument from 1920 for his “Normal Form” theorem. “Geometric” being the infinitary version of “coherent”, it is further shown that every infinitary first-order theory, suitably restricted, has a geometric conservative extension, hence the title. The results are applied to simplify methods used in reasoning in and about modal and intermediate logics. We include also a new algorithm to generate special coherent implications from an axiom, designed to preserve the structure of formulae with relatively little use of normal forms.

Copyright

References

Hide All
[1]Antonius, W., Théories cohérentes et prétopos. Thèse de Maitrise ès Sciences (Mathématiques), Université de Montréal, Montreal, 1975.
[2]Avigad, J., Dean, E., and Mumma, J., A formal system for Euclid’s elements. Review of Symbolic Logic, vol. 2 (2009), pp. 700767.
[3]Avron, A., Gentzen-type systems, resolution and tableaux. Journal of Automated Reasoning, vol. 10 (1993), pp. 265281.
[4]Barr, M., Toposes without points. Journal of Pure and Applied Algebra, vol. 5 (1974), pp. 265280.
[5]Bezem, M., Final Report: Automating Coherent Logic—ACL. http://www.ii.uib.no/acl/acl-report-final.pdf, 2013.
[6]Bezem, M. and Coquand, T., Automating Coherent Logic, Proceedings of LPAR 2005, LNCS 3835, Springer, Berlin, 2005, pp. 246260.
[7]Bezem, M., Coquand, T., and Waaler, A., Research Proposal: Automating Coherent Logic. http://www.ii.uib.no/acl/description.pdf, 2006.
[8]Bezem, M. and Hendricks, T., On the mechanization of the proof of Hessenberg’s theorem in coherent logic. Journal of Automated Reasoning, vol. 40 (2008), pp. 6185.
[9]Blass, A., Topoi and computation. Bulletin of the EATCS, vol. 36 (1988), pp. 5765.
[10]Blass, A., Does Quantifier-Elimination Imply Decidability?http://math.stackexchange.com/questions/260293/, 2012.
[11]Castellini, C. and Smaill, A., A systematic presentation of quantified modal logics. Logic Journal of the IGPL, vol. 10 (2002), pp. 571599.
[12]Chagrov, A. and Zakharyaschev, M., Modal logic, Oxford University Press, Oxford, 1997.
[13]Ciabattoni, A., Maffezioli, P., and Spandier, L., Hypersequent and Labelled Calculi for Intermediate Logics, In Tableaux 2013 Proceedings, LNCS 8123, Springer, Heidelberg, 2013, pp. 8196.
[14]van Dalen, D, Logic and Structure, third ed., Springer, Berlin, 1997.
[15]Dyckhoff, R., Contraction-free calculi for intuitionistic logic, this Journal, vol. 57 (1992), pp. 795807.
[16]Dyckhoff, R., Implementations of Coherentisations of First-order Logic, http://rd.host.cs.st-andrews.ac.uk/logic/nonmac/, School of Computer Science, University of St Andrews, 2014.
[17]Dyckhoff, R. and Lengrand, S., LJQ: A Strongly Focused Calculus For Intuitionistic Logic, In CiE 2006 Proceedings, LNCS 3988, Springer, 2006, pp. 173185.
[18]Dyckhoff, R. and Negri, S., Proof analysis in intermediate logics. Archive for Mathematical Logic, vol. 51 (2012), pp. 7192.
[19]Dyckhoff, R. and Negri, S., An idempotent coherentisation algorithm. MS. In preparation, 2015.
[20]Fisher, J., CoFOL Report and User Guide, www.csupomona.edu/∼jrfisher/colog2012/reports/coFOL.pdf, 20 April 2012.
[21]Fisher, J. and Bezem, M., Query Completeness of Skolem Machine Computations, Machines, Computations and Universality, 2007 Proceedings, LNCS 4664, Springer, 2007, pp. 182192.
[22]Fisher, J. and Bezem, M., Skolem machines, Fundamenta Informaticae, vol. 91 (2009), pp. 79103.
[23]Freyd, P., Aspects of topoi. Bulletin of the Australian Mathematical Society, vol. 7 (1972), pp. 176.
[24]Harrison, J., Handbook of Practical Logic and Automated Reasoning, Cambridge University Press, New York, NY, 2009.
[25]van Heijenoort, J, From Frege to Gödel, Harvard University Press, Cambridge, MA, 1967.
[26]Hilbert, D. and Bernays, P., Foundations of mathematics I, Translated from German “Grundlagen der Mathematik I”, second ed., (1968) (C.-P. Wirth, editor), College Publications, London, 2011.
[27]Hodges, W., Model Theory, Cambridge University Press, Cambridge, 1993.
[28]Holen, B., Hovland, D., and Giese, M., Efficient Rule-Matching for Hyper-Tableaux, 9th International Workshop on Implementation of Logics Proceedings, EasyChair Proceedings in Computing Series, vol. 22, EasyChair, 2013, pp. 417.
[29]Jervell, H., Thoralf Skolem: Pioneer of computational logic. Nordic Journal of Philosophical Logic, vol. 1 (1996), pp. 107117.
[30]Johnstone, P., Stone Spaces, Cambridge University Press, Cambridge, 1982.
[31]Johnstone, P., Sketches of an Elephant: A Topos Theory Companion, I and II, Oxford Logic Guides, vol. 43, 44, Oxford University Press, Oxford, 2002.
[32]López-Escobar, E. G. K., An interpolation theorem for denumerably long formulae. Fundamenta Mathematicae, vol. 57 (1965), pp. 253272.
[33]Mac Lane, S. and Moerdijk, I., Sheaves in Geometry and Logic: A First Introduction to Topos Theory, Springer, New York, 1992.
[34]Maffezioli, P., Naibo, A., and Negri, S., The Church-Fitch knowability paradox in the light of structural proof theory. Synthese, vol. 190 (2013), pp. 26772716.
[35]Makkai, M. and Reyes, G. E., First-Order Categorical Logic, Lecture Notes in Mathematics, vol. 611, Springer, Berlin, 1977.
[36]Marquis, J. P. and Reyes, G. E., The History of Categorical Logic: 1963–1977, Handbook of the History of Logic, vol. 6 (Sets and Extensions in the Twentieth Century), 2012, pp. 689800.
[37]Minker, J., Overview of disjunctive logic programming. Annals of Mathematics and Artificial Intelligence, vol. 12 (1994), pp. 124.
[38]Mints, G., Classical and Intuitionistic Geometric Logic. Talk at Conference on Philosophy, Mathematics, Linguistics: Aspects of Interaction 2012, http://science-visits.mccme.ru/doc/mints_talk_2012-05-22.pdf, 2012.
[39]Negri, S., Contraction-free sequent calculi for geometric theories, with an application to Barr’s theorem. Archive for Mathematical Logic, vol. 42 (2003), pp. 389401.
[40]Negri, S., Proof analysis in modal logic. Journal of Philosophical Logic, vol. 34 (2005), pp. 507544.
[41]Negri, S., Proof analysis beyond geometric theories: from rule systems to systems of rules. Journal of Logic and Computation, http://logcom.oxfordjournals.org/content/early/2014/06/13/logcom.exu037, 2014.
[42]Negri, S., Proofs and countermodels in non-classical logics. Logica Universalis, vol. 8 (2014), pp. 2560.
[43]Negri, S. and von Plato, J., Structural Proof Theory, Cambridge University Press, Cambridge, 2001.
[44]Negri, S. and von Plato, J., Proof Analysis, Cambridge University Press, Cambridge, 2011.
[45]de Nivelle, H and Meng, J., Geometric Resolution: a Proof Procedure Based on Finite Model Search, Proceedings of IJCAR 2006, LNAI 4130, Springer, 2006, pp. 303317.
[46]OCaml: An industrial strength programming language supporting functional, imperative and object-oriented styles, https://ocaml.org/.
[47]Orevkov, V. P., Glivenko’s Sequence Classes, Logical and logico-mathematical calculi 1, Proceedings of the Steklov Institute of Mathematics, vol. 98 (pp. 131–154 in Russian original), 1968, pp. 147–173.
[48]Palmgren, E., An intuitionistic axiomatisation of real closed fields. Mathematical Logic Quarterly, vol. 48 (2002), pp. 297299.
[49]von Plato, J, In the shadows of the Löwenheim-Skolem theorem: Early combinatorial analyses of mathematical proofs. Bulletin of Symbolic Logic, vol. 13 (2005), pp. 189225.
[50]Polonsky, A., Proofs, types and lambda calculus. PhD thesis, University of Bergen, Bergen, 2011.
[51]Rathjen, M., Notes on proof theory, Leeds University, Leeds, 2014. Unpublished MS.
[52]Reyes, G. E., Sheaves and concepts: a model-theoretic interpretation of Grothendieck topoi. Cahiers de Topologie et Géométrie Différentielle Catégoriques, vol. 18 (1977), pp. 105137.
[53]Rothmaler, P., Introduction to Model Theory, Taylor and Francis, New York, 2000.
[54]Sacks, G., Saturated Model Theory, W. A. Benjamin Inc, Reading MA, 1972 (Second ed., World Scientific, Singapore, 2009).
[55]Simpson, A., The proof theory and semantics of intuitionistic modal logic. PhD thesis, Edinburgh University, Edinburgh, 1994.
[56]Skolem, T., Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit und Beweisbarkeit mathematischen Sätze nebst einem Theoreme über dichte Mengen, Skrifter I, vol. 4, Det Norske Videnskaps-Akademi, 1920, pp. 1–36. Also in [57, pp. 103–136]. Also (so far as §1 is concerned) in translation in [25, pp. 254–263].
[57]Skolem, T., Selected Works in Logic (Fenstad, J. E., editor), Universitetsforlaget, Oslo, 1970.
[58]Smullyan, R. M., First-Order Logic. Corrected reprint of 1968 original. Dover Pubs. Inc., New York, 1995.
[59]Stojanović, S., Pavlović, V., and Janic̆ić, P., A Coherent Logic Based Geometry Theorem Prover Capable of Producing Formal and Readable Proofs, Proceedings of Automated Deduction in Geometry 2010, LNAI 6877, Springer, Heidelberg, 2011, pp. 201220.
[60]Troelstra, A. S. and Schwichtenberg, H., Basic Proof Theory, second ed., Cambridge University Press, Cambridge, 2001.
[61]Wraith, G., Generic Galois Theory of Local Rings, Proceedings of Applications of Sheaves, Durham 1977, LNM 753, Springer, New York, 1979, pp 739767.
[62]Wraith, G., Intuitionistic Algebra: Some Recent Developments in Topos Theory, Proceedings of International Congress of Mathematics, Helsinki, 1978, pp. 331337.

Keywords

GEOMETRISATION OF FIRST-ORDER LOGIC

  • ROY DYCKHOFF (a1) and SARA NEGRI (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.