Skip to main content Accessibility help
×
×
Home

AN INVITATION TO MODEL THEORY AND C*-ALGEBRAS

  • MARTINO LUPINI (a1)

Abstract

We present an introductory survey to first order logic for metric structures and its applications to C*-algebras.

Copyright

References

Hide All
[1]Akemann, C. A. and Pedersen, G. K., Central sequences and inner derivations of separable C*-algebras. American Journal of Mathematics, vol. 101 (1979), no. 5, pp. 10471061.
[2]Arzhantseva, G. and Paunescu, L., Almost commuting permutations are near commuting permutations. Journal of Functional Analysis, vol. 269 (2015), no. 3, pp. 745757.
[3]Arzhantseva, G. and Paunescu, L., Linear sofic groups and algebras. Transactions of the American Mathematical Society, vol. 369 (2017), no. 4, pp. 22852310.
[4]Atiyah, M. F. and Hirzebruch, H., Riemann-Roch theorems for differentiable manifolds, Bulletin of the American Mathematical Society. vol. 65 (1959), no. 4, pp. 276281.
[5]Bankston, P., Co-elementary equivalence, co-elementary maps, and generalized arcs. Proceedings of the American Mathematical Society, vol. 125 (1977), no. 12, pp. 37153720.
[6]Bankston, P., Reduced coproducts of compact Hausdorff spaces. The Journal of Symbolic Logic, vol. 52 (1987), no. 2, pp. 404424.
[7]Bankston, P., A hierarchy of maps between compacta. The Journal of Symbolic Logic, vol. 64 (1999), no. 4, pp. 16281644.
[8]Bankston, P., Some applications of the ultrapower theorem to the theory of compacta. Applied Categorical Structures, vol. 8 (2000 [1997]), no. 1, pp. 4566.
[9]Barlak, S. and Szabó, G., Sequentially split *-homomorphisms between C*-algebras. International Journal of Mathematics, vol. 27 (2016), no. 13, p. 1650105.
[10]Barlak, S., Szabó, G., and Voigt, C., The spatial Rokhlin property for actions of compact quantum groups. Journal of Functional Analysis, vol. 272 (2017), no. 6, pp. 23082360.
[11]Ben Yaacov, I., Berenstein, A., Henson, C. W., and Usvyatsov, A., Model theory for metric structures, Model Theory with Applications to Algebra and Analysis, vol. 2 (Chatzidakis, Z., Macpherson, D., Pillay, A., and Wilkie, A., editors), London Mathematical Society Lecture Note Series, vol. 350, Cambridge University Press, Cambridge, 2008, pp. 315427.
[12]Ben Yaacov, I. and Iovino, J., Model theoretic forcing in analysis. Annals of Pure and Applied Logic, vol. 158 (2009), no. 3, pp. 163174.
[13]Blackadar, B., Encyclopaedia of Mathematical Sciences, Operator Algebras, vol. 122, Springer-Verlag, Berlin, 2006.
[14]Blackadar, B. and Kirchberg, E., Generalized inductive limits of finite-dimensional C*-algebras. Mathematische Annalen, vol. 307 (1997), no. 3, pp. 343380.
[15]Boutonnet, R., Chifan, I., and Ioana, A., II1 factors with nonisomorphic ultrapowers. Duke Mathematical Journal, vol. 166 (2017), no. 11, pp. 20232051.
[16]Brown, L. G., Douglas, R. G., and Fillmore, P. A., Extensions of C*-algebras and K-homology. Annals of Mathematics. Second Series, vol. 105 (1977), no. 2, pp. 265324.
[17]Brown, L. G. and Pedersen, G., C*-algebras of real rank zero. Journal of Functional Analysis, vol. 99 (1991), no. 1, pp. 131149.
[18]Capraro, V. and Lupini, M., Lecture Notes in Mathematics, Introduction to Sofic and Hyperlinear Groups and Connes’ Embedding Conjecture, vol. 2136, Springer, Cham, 2015.
[19]Carlson, K., Cheung, E., Farah, I., Gerhardt-Bourke, A., Hart, B., Mezuman, L., Sequeira, N., and Sherman, A., Omitting types and AF algebras. Archive for Mathematical Logic, vol. 53 (2014), no. 1–2, pp. 157169.
[20]Carrión, J. R., Dadarlat, M., and Eckhardt, C., On groups with quasidiagonal C*-algebras. Journal of Functional Analysis, vol. 265 (2013), no. 1, pp. 135152.
[21]Cohen, P. J., The independence of the continuum hypothesis. Proceedings of the National Academy of Sciences of the United States of America, vol. 50 (1963), pp. 11431148.
[22]Cohen, P. J., The independence of the continuum hypothesis. II. Proceedings of the National Academy of Sciences of the United States of America, vol. 51 (1964), pp. 105110.
[23]Coskey, S. and Farah, I., Automorphisms of corona algebras, and group cohomology. Transactions of the American Mathematical Society, vol. 366 (2014), no. 7, pp. 36113630.
[24]Cuntz, J., Simple C*-algebras generated by isometries. Communications in Mathematical Physics, vol. 57 (1977), no. 2, pp. 173185.
[25]Eagle, C. J., Goldbring, I., and Vignati, A., The pseudoarc is a co-existentially closed continuum. Topology and Its Applications, vol. 207 (2016), pp. 19.
[26]Eagle, C. J. and Vignati, A., Saturation and elementary equivalence of C*-algebras. Journal of Functional Analysis, vol. 269 (2015), no. 8, pp. 26312664.
[27]Elek, G. and Szabó, E., Sofic groups and direct finiteness. Journal of Algebra, vol. 280 (2004), no. 2, pp. 426434.
[28]Elek, G. and Szabó, E., Sofic representations of amenable groups. Proceedings of the American Mathematical Society, vol. 139 (2011), no. 12, pp. 42854291.
[29]Elliott, G. and Toms, A., Regularity properties in the classification program for separable amenable C*-algebras. Bulletin of the American Mathematical Society, vol. 45 (2008), no. 2, pp. 229245.
[30]Elliott, G. A., On the classification of inductive limits of sequences of semisimple finite-dimensional algebras. Journal of Algebra, vol. 38 (1976), no. 1, pp. 2944.
[31]Elliott, G. A., The classification problem for amenable C*-algebras, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) (Chatterji, S. D., editor), Birkhäuser, Basel, 1995, pp. 922932.
[32]Farah, I., All automorphisms of all Calkin algebras. Mathematical Research Letters, vol. 18 (2011), no. 3, pp. 489503.
[33]Farah, I., All automorphisms of the Calkin algebra are inner. Annals of Mathematics, vol. 173 (2011), no. 2, pp. 619661.
[34]Farah, I., Goldbring, I., Hart, B., and Sherman, D., Existentially closed II1 factors. Fundamenta Mathematicae, vol. 233 (2016), no. 2, pp. 173196.
[35]Farah, I. and Hart, B., Countable saturation of corona algebras. Comptes Rendus Mathématiques de l’Académie des Sciences, vol. 35 (2013), no. 2, pp. 3556.
[36]Farah, I., Hart, B., Lupini, M., Robert, L., Tikuisis, A., Vignati, A., and Winter, W., Model theory of C*-algebras. Memoirs of the American Mathematical Society, to appear.
[37]Farah, I., Hart, B., Rørdam, M., and Tikuisis, A., Relative commutants of strongly self-absorbing C*-algebras. Selecta Mathematica, vol. 23 (2017), no. 1, pp. 363387.
[38]Farah, I., Hart, B., and Sherman, D., Model theory of operator algebras I: Stability. Bulletin of the London Mathematical Society, vol. 45 (2013), no. 4, pp. 825838.
[39]Farah, I., Hart, B., and Sherman, D., Model theory of operator algebras II: Model theory. Israel Journal of Mathematics, vol. 201 (2014), no. 1, pp. 477505.
[40]Farah, I., Hart, B., and Sherman, D., Model theory of operator algebras III: Elementary equivalence and II1: factors. Bulletin of the London Mathematical Society, vol. 46 (2014), no. 3, pp. 609628.
[41]Farah, I. and Hirshberg, I., The Calkin algebra is not countably homogeneous. Proceedings of the American Mathematical Society, vol. 144 (2016), no. 12, pp. 53515357.
[42]Farah, I. and Magidor, M., Omitting types in logic of metric structures, Journal of Mathematical Logic, vol. 18 (2018), no. 2, p. 1850006.
[43]Farah, I. and McKenney, P., Homeomorphisms of Cech-Stone remainders: The zero-dimensional case, Proccedings of the American Mathematical Society, vol. 146 (2018), no. 5, pp. 22532262.
[44]Farah, I., McKenney, P., and Schimmerling, E., Some Calkin algebras have outer automorphisms. Archive for Mathematical Logic, vol. 52 (2013), no. 5, pp. 517524.
[45]Farah, I. and Shelah, S., A dichotomy for the number of ultrapowers. Journal of Mathematical Logic, vol. 10 (2010), no. 1–2, pp. 4581.
[46]Farah, I. and Shelah, S., Rigidity of continuous quotients. Journal of the Institute of Mathematics of Jussieu, vol. 15 (2016), no. 1, pp. 128.
[47]Gardella, E., Rokhlin dimension for compact group actions. Indiana University Mathematics Journal, vol. 66 (2017), no. 2, pp. 659703.
[48]Gardella, E, Kalantar, M., and Lupini, M., Rokhlin dimension for compact quantum group actions. Journal of Noncommutative Geometry, to appear.
[49]Gardella, E. and Lupini, M., Applications of model theory to C*-dynamics. Journal of Functional Analysis, vol. 275 (2018), no. 7, pp. 18891942.
[50]Glebsky, L., Almost commuting matrices with respect to normalized Hilbert-Schmidt norm, preprint, 2010, arXiv:1002.3082.
[51]Glimm, J. G., On a certain class of operator algebras. Transactions of the American Mathematical Society, vol. 95 (1960), no. 2, pp. 318340.
[52]Gödel, K., The Consistency of the Continuum Hypothesis, Annals of Mathematics Studies, vol. 3, Princeton University Press, Princeton, NJ, 1940.
[53]Goldbring, I., Enforceable operator algebras, preprint, 2017, arXiv:1706.09048.
[54]Goldbring, I., Hart, B., and Sinclair, T., The theory of tracial von Neumann algebras does not have a model companion. Journal of Symbolic Logic, vol. 78 (2013), no. 3, pp. 10001004.
[55]Goldbring, I. and Sinclair, T., Robinson forcing and the quasidiagonality problem. International Journal of Mathematics, vol. 28 (2017), no. 2, p. 1750008.
[56]Goldbring, I. and Sinclair, T., On Kirchberg’s embedding problem. Journal of Functional Analysis, vol. 269 (2015), no. 1, pp. 155198.
[57]Gromov, M., Endomorphisms of symbolic algebraic varieties. Journal of the European Mathematical Society, vol. 1 (1999), no. 2, pp. 109197.
[58]Hodges, W., Building Models by Games, London Mathematical Society Student Texts, vol. 2, Cambridge University Press, Cambridge, 1985.
[59]Jiang, X. and Su, H., On a simple unital projectionless C*-algebra. American Journal of Mathematics, vol. 121 (1999), no. 2, pp. 359413.
[60]Kirchberg, E. and Phillips, N. C., Embedding of exact C*-algebras in the Cuntz algebra ${{\cal O}_2}$.. Journal für die reine und angewandte Mathematik, vol. 525 (2000), pp. 1753.
[61]Kirchberg, E. and Rørdam, M., Infinite non-simple C*-algebras: Absorbing the Cuntz algebra ${{\cal O}_\infty }$.. Advances in Mathematics, vol. 167 (2002), no. 2, pp. 195264.
[62]Loring, T. A., Fields Institute Monographs, Lifting Solutions to Perturbing Problems in C*-Algebras, vol. 8, American Mathematical Society, Providence, RI, 1997.
[63]McDuff, D., Central sequences and the hyperfinite factor. Proceedings of the London Mathematical Society. Third Series, vol. 21 (1970), pp. 443461.
[64]Ozawa, N., About the QWEP conjecture. International Journal of Mathematics, vol. 15 (2004), no. 5, pp. 501530.
[65]Pedersen, G. K., Graduate Texts in Mathematics, Analysis Now, vol. 118, Springer-Verlag, New York, 1989.
[66]Pestov, V. G., Hyperlinear and sofic groups: A brief guide, this Journal, vol. 14 (2008), no. 4, pp. 449480.
[67]Phillips, N. C., Real rank and exponential length of tensor products with ${{\cal O}_\infty }$.. Journal of Operator Theory, vol. 47 (2002), no. 1, pp. 117130.
[68]Phillips, N. C. and Weaver, N., The Calkin algebra has outer automorphisms. Duke Mathematical Journal, vol. 139 (2007), no. 1, pp. 185202.
[69]Podleś, P., Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU2 and SO3 groups. Communications in Mathematical Physics, vol. 170 (1995), no. 1, pp. 120.
[70]Raeburn, I. and Williams, D. P., Mathematical Surveys and Monographs, Morita Equivalence and Continuous-Trace C*-Algebras, vol. 60, American Mathematical Society, Providence, RI, 1998.
[71]Rørdam, M., Encyclopaedia of Mathematical Sciences, Classification of Nuclear C*-Algebras, vol. 126, Springer-Verlag, Berlin, 2002.
[72]Rosenberg, J., Graduate Texts in Mathematics, Algebraic K-Theory and Its Applications, vol. 147, Springer-Verlag, New York, 1994.
[73]Schochet, C., Algebraic topology and C*-algebras, C*-Algebras: 1943–1993 (Doran, R. S., editor), Contemporary Mathematics, vol. 167, American Mathematical Society, Providence, RI, 1994, pp. 218231.
[74]Shoenfield, J. R., The problem of predicativity, Essays on the Foundations of Mathematics (Bar-Hillel, Y., Poznanski, E. I. J., Rabin, M. O., and Robinson, A., editors), Magnes Press, Hebrew University of Jerusalem, 1961, pp. 132139.
[75]Szabó, G., Strongly self-absorbing C*-dynamical systems. Transactions of the American Mathematical Society, vol. 370 (2018), no. 1, pp. 99130.
[76]Szabó, G., Strongly self-absorbing C*-dynamical systems, II. Journal of Noncommutative Geometry, vol. 12 (2018), no. 1, pp. 369406.
[77]Szabó, G., Strongly self-absorbing C*-dynamical systems, III. Advances in Mathematics, vol. 316 (2017), pp. 356380.
[78]Thom, A., Sofic groups and diophantine approximation. Communications on Pure and Applied Mathematics, vol. 61 (2008), no. 8, pp. 11551171.
[79]Thom, A., About the metric approximation of Higman’s group. Journal of Group Theory, vol. 15 (2012), no. 2, pp. 301310.
[80]Todorcevic, S., Annals of Mathematics Studies, Introduction to Ramsey Spaces, vol. 174, Princeton University Press, Princeton, NJ, 2010.
[81]Toms, A., An infinite family of non-isomorphic C*-algebras with identical K-theory. Transactions of the American Mathematical Society, vol. 360 (2008), no. 10, pp. 53435354.
[82]Toms, A. S., Comparison theory and smooth minimal C*-dynamics. Communications in Mathematical Physics, vol. 289 (2009), no. 2, pp. 401433.
[83]Toms, A. S. and Winter, W., Strongly self-absorbing C*-algebras. Transactions of the American Mathematical Society, vol. 359 (2007), no. 8, pp. 39994029.
[84]Vignati, A., Nontrivial homeomorphisms of Cech-Stone remainders. Münster Journal of Mathematics, vol. 10 (2017), no. 1, pp. 189200.
[85]Voiculescu, D., Asymptotically commuting finite rank unitary operators without commuting approximants. Acta Universitatis Szegediensis, vol. 45 (1983), no. 1–4, pp. 429431.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of Symbolic Logic
  • ISSN: 1079-8986
  • EISSN: 1943-5894
  • URL: /core/journals/bulletin-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed