Skip to main content Accessibility help
×
Home
Hostname: page-component-54cdcc668b-j2jnr Total loading time: 0.352 Render date: 2021-03-08T23:27:48.336Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

The Problem of Logical Constants

Published online by Cambridge University Press:  15 January 2014

Mario Gómez-Torrente
Affiliation:
Instituto de Investigaciones Filosóficas, Universidad Nacional Autónoma de México, México, D. F. 04510, Mexico E-mail: mariogt@servidor.unam.mx
Corresponding
E-mail address:

Abstract

There have been several different and even opposed conceptions of the problem of logical constants, i.e., of the requirements that a good theory of logical constants ought to satisfy. This paper is in the first place a survey of these conceptions and a critique of the theories they have given rise to. A second aim of the paper is to sketch some ideas about what a good theory would look like. A third aim is to draw from these ideas and from the preceding survey the conclusion that most conceptions of the problem of logical constants involve requirements of a philosophically demanding nature which are probably not satisfiable by any minimally adequate theory.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2002

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Aristotle, , Posterior analytics, Clarendon Press, Oxford, 1975, (translation by Barnes, J.).Google Scholar
[2] Belnap, N. D., Tonk, plonk andplink, Analysis, vol. 22 (1962), pp. 130134.CrossRefGoogle Scholar
[3] Bolzano, B., Theory of science, Basil Blackwell, Oxford, 1972, (translation by R. George of selections of Wissenschaftslehre, Seidel, Sulzbach, 1837).Google Scholar
[4] Carnap, R., The logical syntax of language, Routledge & Kegan Paul, London, 1937, (expanded English translation by A. Smeathon of Logische Syntax der Sprache, Julius Springer, Vienna, 1934).Google Scholar
[5] Carnap, R., Replies and systematic expositions, The philosophy of Rudolf Carnap (Schilpp, P. A., editor), Open Court, La Salle, Illinois, 1963, pp. 8591013.Google Scholar
[6] Coffa, J. A., The semantic tradition from Kant to Carnap, Cambridge University Press, Cambridge, 1991.CrossRefGoogle Scholar
[7] Dummett, M., The logical basis of metaphysics, Harvard University Press, Cambridge, Massachusetts, 1991.Google Scholar
[8] Etchemendy, J., The concept of logical consequence, Harvard University Press, Cambridge, Massachusetts, 1990.Google Scholar
[9] Frege, G., Begriffsschrift, a formula language, modeled upon that of arithmetic, for pure thought, From Frege to Godel (van Heijenoort, J., editor), Harvard University Press, Cambridge, Massachusetts, 1967, (translation by S. Bauer-Mengelberg of Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens, Nebert, Halle, 1879).Google Scholar
[10] Gentzen, G., Investigations into logical deduction, The collected papers of Gerhard Gentzen (Szabo, M. E., editor), North-Holland, Amsterdam, 1969, (translation of Untersuchungen über das logische Schliessen, Mathematische Zeitschrift , vol. 39, 1934, pp. 176–210, 405–431), pp. 68–131.Google Scholar
[11] Gómez-Torrente, M., Logical truth and Tarskian logical truth, Synthese, vol. 117 (1998/1999), pp. 375408.CrossRefGoogle Scholar
[12] Hacking, I., What is logic?, Journal of Philosophy, vol. 76 (1979), pp. 285319.CrossRefGoogle Scholar
[13] Hanson, W. H., The concept of logical consequence, Philosophical Review, vol. 106 (1997), pp. 365409.CrossRefGoogle Scholar
[14] Kneale, W., The province of logic, Contemporary British philosophy, 3rd series (Lewis, H. D., editor), Allen & Unwin, London, 1956, pp. 237261.Google Scholar
[15] McCarthy, T., The idea of a logical constant, Journal of Philosophy, vol. 78 (1981), pp. 499523.CrossRefGoogle Scholar
[16] McCarthy, T., Modality, invariance, and logical truth, Journal of Philosophical Logic, vol. 16 (1987), pp. 423443.CrossRefGoogle Scholar
[17] McCarthy, T., Logical form and radical interpretation, Notre Dame Journal of Formal Logic, vol. 30 (1989), pp. 401419.CrossRefGoogle Scholar
[18] McGee, V., Logical operations, Journal of Philosophical Logic, vol. 25 (1996), pp. 567580.CrossRefGoogle Scholar
[19] Mostowski, A., On a generalization of quantifiers, Fundamenta Mathematicae, vol. 44 (1957), pp. 1236.Google Scholar
[20] Peacocke, C., What is a logical constant?, Journal of Philosophy, vol. 73 (1976), pp. 221240.CrossRefGoogle Scholar
[21] Popper, K. R., New foundations for logic, Mind, vol. 56 (1947), pp. 193235.CrossRefGoogle Scholar
[22] Prior, A. N., The runabout inference-ticket, Analysis, vol. 21 (1960), pp. 3839.CrossRefGoogle Scholar
[23] Quine, W.V., Carnap and logical truth, The philosophy of Rudolf Carnap (Schilpp, P. A., editor), Open Court, La Salle, Illinois, 1963, pp. 385406.Google Scholar
[24] Ray, G., Logical consequence: a defense of Tarski, Journal of Philosophical Logic, vol. 25 (1996), pp. 617677.CrossRefGoogle Scholar
[25] Russell, B., The principles of mathematics, Cambridge University Press, Cambridge, 1903.Google Scholar
[26] Russell, B., Introduction to mathematical philosophy, 2 ed., Allen & Unwin, London, 1920, the first edition is of 1919.Google Scholar
[27] Sainsbury, M., Logical forms, Basil Blackwell, Oxford, 1991.Google Scholar
[28] Sher, G., The bounds of logic, Massachusetts Institute of Technology Press, Cambridge, Massachusetts, 1991.Google Scholar
[29] Tarski, A., Einführung in die mathematische Logik und in die Methodologie der Mathematik, Julius Springer, Vienna, 1937.CrossRefGoogle Scholar
[30] Tarski, A., What is elementary geometry?, The axiomatic method, with special reference to geometry and physics (Henkin, L., Suppes, P., and Tarski, A., editors), North-Holland, Amsterdam, 1959, pp. 1629.Google Scholar
[31] Tarski, A., Logic, semantics, metamathematics, 2 ed., Hackett, Indianapolis, 1983.Google Scholar
[32] Tarski, A., What are logical notions?, History and Philosophy of Logic, vol. 7 (1986), pp. 143154, (the text of a lecture originally delivered by Tarski in 1966, edited by John Corcoran).CrossRefGoogle Scholar
[33] Tarski, A., A philosophical letter of Alfred Tarski, Journal of Philosophy, vol. 84 (1987), pp. 2832, (a 1944 letter of Tarski to Morton White, published with a preface of the latter).Google Scholar
[34] Tarski, A., The concept of truth in formalized languages, in [31], (translation by J. H. Woodger of Der Wahrheitsbegriff' in den formalisierten Sprachen, Studia Philosophica , vol. 1, 1935, pp. 261-405), pp. 152–278.Google Scholar
[35] Tarski, A., On the concept of logical consequence, in [31], (translation by J. H. Woodger of Über den Begriff der logischen Folgerung,in Actes du Congrès International de Philosophie Scientifique , fasc. 7 (Actualités Scientifiques et Industrielles, vol. 394), Hermannet Cie, Paris, 1936, pp. 1-11), pp. 409–420.Google Scholar
[36] Tarski, A. and Givant, S., A formalization of set theory without variables, American Mathematical Society, Providence, Rhode Island, 1987.CrossRefGoogle Scholar
[37] Tarski, A. and Lindenbaum, A., On the limitations of the means of expression of deductive theories, in [31], (translation by J. H. Woodger of Über die Beschranktheit der Ausdrucksmittel deduktiver Theorien, in Ergebnisse eines mathematischen Kolloquiums, fasc. 7, 1934-1935, pp. 15-22), pp. 384–392.Google Scholar
[38] Warmbrōd, K., Logical constants, Mind, vol. 108 (1999), pp. 503538.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 21 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 8th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Problem of Logical Constants
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The Problem of Logical Constants
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The Problem of Logical Constants
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *