Skip to main content Accessibility help
×
Home

Qualitative Sybr Green real-time detection of single nucleotide polymorphisms responsible for target-site resistance in insect pests: the example of Myzus persicae and Musca domestica

  • V. Puggioni (a1), O. Chiesa (a1), M. Panini (a1) and E. Mazzoni (a1)

Abstract

Chemical insecticides have been widely used to control insect pests, leading to the selection of resistant populations. To date, several single nucleotide polymorphisms (SNPs) have already been associated with insecticide resistance, causing reduced sensitivity to many classes of products. Monitoring and detection of target-site resistance is currently one of the most important factors for insect pest management strategies. Several methods are available for this purpose: automated and high-throughput techniques (i.e. TaqMan or pyrosequencing) are very costly; cheaper alternatives (i.e. RFLP or PASA–PCRs) are time-consuming and limited by the necessity of a final visualization step. This work presents a new approach (QSGG, Qualitative Sybr Green Genotyping) which combines the specificity of PASA–PCR with the rapidity of real-time PCR analysis. The specific real-time detection of Cq values of wild-type or mutant alleles (amplified used allele-specific primers) allows the calculation of ΔCqW–M values and the consequent identification of the genotypes of unknown samples, on the basis of ranges previously defined with reference clones. The methodology is applied here to characterize mutations described in Myzus persicae and Musca domestica and we demonstrate it represents a valid, rapid and cost-effective technique that can be adopted for monitoring target-site resistance in field populations of these and other insect species.

Copyright

Corresponding author

*Address for correspondence Fax: +39 0523 599268 Phone: +39 0523 599237 E-mail: emanuele.mazzoni@unicatt.it

References

Hide All
Anstead, J.A., Williamson, M.S., Eleftherianos, I. & Denholm, I. (2004) High-throughput detection of knockdown resistance in Myzus persicae using allelic discriminating quantitative PCR. Insect Biochemistry and Molecular Biology 34(8), 871877.
Anstead, J.A., Williamson, M.S. & Denholm, I. (2008) New methods for the detection of insecticide resistant Myzus persicae in the UK suction trap network. Agricultural and Forest Entomology 10(3), 291295.
Bai, L., Zhu, G.D., Zhou, H.Y., Tang, J.X., Li, J.L., Xu, S., Zhang, M.H., Yao, L.N., Huang, G.Q., Wang, Y.B., Zhang, H.W., Wang, S.B., Cao, J. & Gao, Q. (2014) Development and application of an AllGlo probe-based qPCR assay for detecting knockdown resistance (kdr) mutations in Anopheles sinensis . Malaria Journal 13(1), 1.
Bass, C., Nikou, D., Donnelly, M.J., Williamson, M.S., Ranson, H., Ball, A., Vontas, J. & Field, L.M. (2007) Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods. Malaria Journal 6(1), 111.
Bass, C., Puinean, A.M., Andrews, M., Cutler, P., Daniels, M., Elias, J., Paul, V.L., Crossthwaite, A.J., Denholm, I., Field, L.M., Foster, S.P., Lind, R., Williamson, M.S. & Slater, R. (2011) Mutation of a nicotinic acetylcholine receptor β subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae . BMC Neuroscience 12(1), 51.
Black, I.V. & Vontas, J.G. (2007) Affordable assays for genotyping single nucleotide polymorphisms in insects. Insect Molecular Biology 16(4), 377387.
Cassanelli, S., Cerchiari, B., Giannini, S., Bizzaro, D., Mazzoni, E. & Manicardi, G.C. (2005) Use of the RFLP-PCR diagnostic test for characterizing MACE and kdr insecticide resistance in the peach potato aphid Myzus persicae . Pest Management Science 61(1), 9196.
Dall'Ozzo, S., Andres, C., Bardos, P., Watier, H. & Thibault, G. (2003) Rapid single-step FCGR3A genotyping based on SYBR Green I fluorescence in real-time multiplex allele-specific PCR. Journal of Immunological Methods 277(1), 185192.
Dhas, D.B.B., Ashmi, A.H., Bhat, B.V., Parija, S.C. & Banupriya, N. (2015) Modified low cost SNP genotyping technique using cycle threshold (Ct) & melting temperature (Tm) values in allele specific real-time PCR. Indian Journal of Medical Research 142(5), 555.
Eleftherianos, I., Foster, S.P., Williamson, M.S. & Denholm, I. (2008) Characterization of the M918T sodium channel gene mutation associated with strong resistance to pyrethroid insecticides in the peach-potato aphid, Myzus persicae (Sulzer). Bulletin of Entomological Research 98(02), 183191.
Fenton, B., Margaritopoulos, J.T., Malloch, G.L. & Foster, S.P. (2010) Micro-evolutionary change in relation to insecticide resistance in the peach–potato aphid, Myzus persicae . Ecological Entomology 35(s1), 131146.
Feyereisen, R., Dermauw, W. & Van Leeuwen, T. (2015) Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropods. Pesticide Biochemistry and Physiology 121, 6177.
Fontaine, S., Caddoux, L., Brazier, C., Bertho, C., Bertolla, P., Micoud, A. & Roy, L. (2011) Uncommon associations in target resistance among French populations of Myzus persicae from oilseed rape crops. Pest Management Science 67(8), 881885.
Fontaine, S., Caddoux, L. & Micoud, A. (2013) Methods for characterising resistance to carbamates, pyrethroids and neonicotinoids in Myzus persicae . Euro Reference 9, 1923.
Fraaije, B.A., Butters, J.A., Coelho, J.M., Jones, D.R. & Hollomon, D.W. (2002) Following the dynamics of strobilurin resistance in Blumeria graminis f. sp. tritici using quantitative allele-specific real-time PCR measurements with the fluorescent dye SYBR Green I. Plant Pathology 51(1), 4554.
Hardstone, M.C. & Scott, J.G. (2010) A review of the interactions between multiple insecticide resistance loci. Pesticide Biochemistry and Physiology 97(2), 123128.
Huang, J., Kristensen, M., Qiao, C.L. & Jespersen, J.B. (2004) Frequency of kdr gene in house fly field populations: correlation of pyrethroid resistance and kdr frequency. Journal of Economic Entomology 97(3), 10361041.
Kwok, P.Y. (2001) Methods for genotyping single nucleotide polymorphisms. Annual Review of Genomics and Human Genetics 2(1), 235258.
Liu, N. & Pridgeon, J.W. (2002) Metabolic detoxication and the kdr mutation in pyrethroid resistant house flies, Musca domestica (L.). Pesticide Biochemistry and Physiology 73(3), 157163.
Mazzoni, E. & Cravedi, P. (2002) Analysis of insecticide-resistant Myzus persicae (Sulzer) populations collected in Italian peach orchards. Pest Management Science 58(9), 975980.
Mazzoni, E., Chiesa, O., Puggioni, V., Panini, M., Manicardi, G.C. & Bizzaro, D. (2015) Presence of kdr and s-kdr resistance in Musca domestica populations collected in Piacenza province (Northern Italy). Bulletin of Insectology 68(1), 6572.
Nabeshima, T., Kozaki, T., Tomita, T. & Kono, Y. (2003) An amino acid substitution on the second acetylcholinesterase in the pirimicarb-resistant strains of the peach potato aphid, Myzus persicae . Biochemical and Biophysical Research Communications 307(1), 1522.
Panini, M., Dradi, D., Marani, G., Butturini, A. & Mazzoni, E. (2014) Detecting the presence of target-site resistance to neonicotinoids and pyrethroids in Italian populations of Myzus persicae . Pest Management Science 70(6), 931938.
Panini, M., Anaclerio, M., Puggioni, V., Stagnati, L., Nauen, R. & Mazzoni, E. (2015) Presence and impact of allelic variations of two alternative s -kdr mutations, M918T and M918L, in the voltage-gated sodium channel of the green peach aphid Myzus persicae . Pest Management Science 71(6), 878884.
Papp, A.C., Pinsonneault, J.K., Cooke, G. & Sadée, W. (2003) Single nucleotide polymorphism genotyping using allele-specific PCR and fluorescence melting curves. Biotechniques 34(5), 10681073.
Puinean, A.M., Elias, J., Slater, R., Warren, A., Field, L.M., Williamson, M.S. & Bass, C. (2013) Development of a high-throughput real-time PCR assay for the detection of the R81T mutation in the nicotinic acetylcholine receptor of neonicotinoid-resistant Myzus persicae . Pest Management Science 69(2), 195199.
Qiu, X., Pan, J., Li, M. & Li, Y. (2012) PCR–RFLP methods for detection of insecticide resistance-associated mutations in the house fly (Musca domestica). Pesticide Biochemistry and Physiology 104(3), 201205.
Rinkevich, F.D., Hedtke, S.M., Leichter, C.A., Harris, S.A., Su, C., Brady, S.G., Taskin, V., Qiu, X. & Scott, J.G. (2012) Multiple origins of kdr-type resistance in the house fly, Musca domestica . PLoS ONE 7(12), e52761.
Rinkevich, F.D., Du, Y. & Dong, K. (2013) Diversity and convergence of sodium channel mutations involved in resistance to pyrethroids. Pesticide Biochemistry and Physiology 106(3), 93100.
Roy, L., Fontaine, S., Caddoux, L., Micoud, A. & Simon, J.C. (2013) Dramatic changes in the genotypic frequencies of target insecticide resistance in French populations of Myzus persicae (Hemiptera: Aphididae) over the last decade. Journal of Economic Entomology 106(4), 18381847.
Soderlund, D.M. & Knipple, D.C. (2003) The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochemistry and Molecular Biology 33(6), 563577.
Tsuchihashi, Z. & Dracopoli, N.C. (2002) Progress in high throughput SNP genotyping methods. The Pharmacogenomics Journal 2(2), 103110.
Voudouris, C.C., Kati, A.N., Sadikoglou, E., Williamson, M., Skouras, P.J., Dimotsiou, O., Georgiou, S., Fenton, B., Skavdis, G. & Margaritopoulos, J.T. (2016) Insecticide resistance status of Myzus persicae in Greece: long-term surveys and new diagnostics for resistance mechanisms. Pest Management Science 72(4), 671683.
Whalon, M.E., Mota-Sanchez, D. & Hollingworth, R.M. (2008) Analysis of global pesticide resistance in arthropods. pp. 531 in Whalon, M.E., Mota-Sanchez, D. & Hollingworth, R.M. (Eds) Global Pesticide Resistance in Arthropods. Wallingford, UK, CABI.
Yu, D.J., Chen, Z.L., Zhang, R.J. & Yin, W.Y. (2005) Real-time qualitative PCR for the inspection and identification of Bactrocera philippinensis and Bactrocera occipitalis (Diptera: Tephritidae) using SYBR Green assay. Raffles Bulletin of Zoology 53(1), 7378.

Keywords

Type Description Title
PDF
Supplementary materials

Puggioni supplementary material S1
Supplementary Figure

 PDF (928 KB)
928 KB
PDF
Supplementary materials

Puggioni supplementary material S2
Supplementary Figure

 PDF (653 KB)
653 KB
PDF
Supplementary materials

Puggioni supplementary material S3
Supplementary Figure

 PDF (1.4 MB)
1.4 MB
PDF
Supplementary materials

Puggioni supplementary material S4
Supplementary Table

 PDF (338 KB)
338 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed