Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T12:22:56.078Z Has data issue: false hasContentIssue false

Population genetic structure of economically important Tortricidae (Lepidoptera) in South Africa: a comparative analysis

Published online by Cambridge University Press:  27 November 2009

A.E. Timm*
Affiliation:
Department of Conservation Ecology and Entomology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
H. Geertsema
Affiliation:
Department of Conservation Ecology and Entomology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
L. Warnich
Affiliation:
Department of Genetics, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
*
*Author for correspondence Fax: +49 (0)6722-502-410 E-mail: aetimm@gmail.com

Abstract

Comparative studies of the population genetic structures of agricultural pests can elucidate the factors by which their population levels are affected, which is useful for designing pest management programs. This approach was used to provide insight into the six Tortricidae of major economic importance in South Africa. The population genetic structure of the carnation worm E. acerbella and the false codling moth T. leucotreta, analyzed using amplified fragment length polymorphism (AFLP) analysis, is presented here for the first time. These results were compared with those obtained previously for the codling moth Cydia pomonella, the oriental fruit moth Grapholita molesta, the litchi moth Cryptophlebia peltastica and the macadamia nut borer T. batrachopa. Locally adapted populations were detected over local geographic areas for all species. No significant differences were found among population genetic structures as result of population history (whether native or introduced) although host range (whether oligophagous or polyphagous) had a small but significant effect. It is concluded that factors such as dispersal ability and agricultural practices have the most important effects on genetically structuring populations of the economically important Tortricidae in South Africa.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, A. (1980) Epichoristodes acerbella (Lepidoptera: Tortricidae) first capture of the imago at large in Britain, UK. Entomologist's Record and Journal of Variation 92, 33.Google Scholar
Anderson, T. (1986) Die akker as gasheerplant van die valskodlingmot, Cryptophlebia leucotreta (Meyr.). Subtropica 7, 1012.Google Scholar
Annecke, D. & Moran, V. (1982) Insects and Mites of Cultivated Plants in South Africa. 383 pp. Durban, South Africa, Butterworths.Google Scholar
Avise, J.C. (1994) Molecular Markers, Natural History, and Evolution. New York, 511 pp. USA, Chapman & Hall.CrossRefGoogle Scholar
Barrett, S.C.H. & Kohn, J.R. (1991) Genetic and evolutionary consequences of small population size in plants: Implications for conservation. pp. 330in Falk, D.A. & Holsinger, K.E. (Eds) Genetics and Conservation of Rare Plants. Oxford, UK, Oxford University Press.CrossRefGoogle Scholar
Blomefield, T. (1989) Economic importance of false codling moth, Cryptophlebia leucotreta, and codling moth, Cydia pomonella, on peaches, nectarines and plums. Phytophylactica 21, 435436.Google Scholar
Blomefield, T.L. (1994) Codling moth resistance: is it here, and how do we manage it? Deciduous Fruit Grower 44, 130132.Google Scholar
Blomefield, T.L. (1996) Follow the guidelines and monitor. Sagtevrugteboer 46, 367.Google Scholar
Blomefield, T.L. & Barnes, B.N. (2000) Integrated control of oriental fruit moth, Grapholita molesta, on peaches using a spray-date prediction model. Acta Horticulturae 525, 161168.CrossRefGoogle Scholar
Blomefield, T.L. & du Plessis, N. (2000) Pear leafroller: a simple matter of weed control? Deciduous Fruit Grower 50, 1213.Google Scholar
Blomefield, T.L. & Geertsema, H. (1990) First record of the oriental fruit moth, Cydia molesta (Lepidoptera: Tortricidae: Olethreutinae), a serious pest of peaches, in South Africa. Phytophylactica 22, 355357.Google Scholar
Bonin, A., Ehrich, D. & Manel, S. (2007) Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Molecular Ecology 16, 37373758.CrossRefGoogle Scholar
Bossart, J. & Pashley Prowell, D. (1998) Genetic estimates of population structure and gene flow: limitations, lessons and new directions. Trends in Ecology and Evolution 13, 202206.CrossRefGoogle ScholarPubMed
Chen, M.J. & Dorn, S. (2009) Microsatellites reveal genetic differentiation among populations in an insect species with high genetic variability in dispersal, the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Bulletin of Entomological Research, doi:10.1017/S0007485309006786.Google Scholar
Daiber, C.C. (1981) False codling moth, Cryptophlebia leucotreta (Meyr.) in peach orchards and home gardens of the summer rainfall area of South Africa. Phytophylactica 13, 105107.Google Scholar
De Villiers, E. (2001) Macadamia nut borer. pp. 117120in van den Berg, M., de Villiers, E. & Joubert, P. (Eds) Pests and Beneficial Arthropods of Tropical and Non-Citrus Subtropical Crops in South Africa. Nelspruit, South Africa, Institute for Tropical and Subtropical Crops, ARC.Google Scholar
Falush, D., Stephens, M. & Pritchard, J.K. (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular Ecology Notes 7, 574578.CrossRefGoogle ScholarPubMed
Felsenstein, J. (2004) PHYLIP (Phylogeny Inference Package) version 3.6. Department of Genome Sciences, University of Washington, Seattle, WA, USA.Google Scholar
Ford, W.K. (1934) Some observations on the bionomics of the false codling moth – Argyroploce leucotreta, Meyrick (Family Eucosmidae) – in Southern Rhodesia. Publications of the British South Africa Company 3, 9–34.Google Scholar
Franck, P., Reyes, M., Olivares, J. & Sauphanor, B. (2007) Genetic architecture in codling moth populations: comparison between microsatellite and insecticide resistance markers. Molecular Ecology 16, 35543564.CrossRefGoogle ScholarPubMed
Fuentes-Contreras, E., Espinoza, J., Lavandero, B. & Ramirez, C. (2008) Population genetic structure of codling moth (Lepidoptera: Tortricidae) from apple orchards in central Chile. Journal of Economic Entomology 101, 190198.CrossRefGoogle ScholarPubMed
Garoia, F., Guarniero, I., Grifoni, D., Marzola, S. & Tinti, F. (2007) Comparative analysis of AFLPs and SSRs efficiency in resolving population genetic structure of Mediterranean Solea vulgaris. Molecular Ecology 16, 13771387.CrossRefGoogle ScholarPubMed
Gaudeul, M., Till-Bottraud, I., Barjon, F. & Manel, S. (2004) Genetic diversity and differentiation in Eryngium alpinum L. (Apiaceae): comparison of AFLP and microsatellite markers. Heredity 92, 508518.CrossRefGoogle ScholarPubMed
Giliomee, J.H. & Riedl, H. (1998) A century of codling moth control in South Africa I. Historical perspective. Journal of South African Horticultural Science 8, 2731.Google Scholar
Gu, H., Hughes, J. & Dorn, S. (2006) Trade-off between mobility and fitness in Cydia pomonella L. (Lepidoptera: Tortricidae). Ecological Entomology 31, 6874.CrossRefGoogle Scholar
Gunn, D. (1921) The false codling-moth (Argyroploce leucotreta Meyr.). Union of South Africa, Department of Agriculture, Science Bulletin No. 21, 28 pp.Google Scholar
Higbee, B.S., Calkins, C.O. & Temple, C.A. (2001) Overwintering of codling moth (Lepidoptera: Tortricidae) larvae in apple harvest bins and subsequent moth emergence. Journal of Economic Entomology 94, 15111517.CrossRefGoogle ScholarPubMed
Hofmeyr, J.H. & Pringle, K.L. (1998) Resistance of false codling moth, Cryptophlebia leucotreta (Meyrick) (Lepidoptera: Tortricidae), to the chitin synthesis inhibitor, triflumuron. African Entomology 6, 373375.Google Scholar
Horak, M. & Brown, R. (1991) Taxonomy and phylogeny. pp. 2348in Van der Geest, L. & Evenhuis, H. (Eds) World Crop Pests. Tortricid Pests. Amsterdam, The Netherlands, Elsevier.Google Scholar
Huff, D., Peakall, R. & Smouse, P. (1993) RAPD variation within and among natural populations of outcrossing buffalograss Buchloë dactyloides (Nutt) Engelm. Theoretical and Applied Genetics 86, 927934.CrossRefGoogle ScholarPubMed
Jakše, J., Kindlhofer, K. & Javornik, B. (2001) Assessment of genetic variation and differentiation of hop genotypes by microsatellite and AFLP markers. Genome 44, 773782.CrossRefGoogle ScholarPubMed
Keil, S., Gu, H. & Dorn, S. (2001) Response of Cydia pomonella to selection on mobility: laboratory evaluation and field verification. Ecological Entomology 26, 495501.CrossRefGoogle Scholar
Komai, F. (1999) A taxonomic review of the genus Grapholita and allied genera (Lepidoptera: Tortricidae) in the Palaearctic region. Entomologica Scandinavica, Supplement 55, 226 pp.Google Scholar
Kovach, W. (1999) MVSP – A Multi-variate Statistical Package for Windows, version 3.1. Pentraeth, Wales, Kovach Computing Services.Google Scholar
Lewontin, R.C. (1972) The apportionment of human diversity. Evolutionary Biology 6, 381398.Google Scholar
Lounsbury, C.P. (1898) Codling moth. Agricultural Journal 13, 597616.Google Scholar
Lynch, M. & Milligan, B. (1994) Analysis of population genetic structure with RAPD markers. Molecular Ecology 3, 9199.CrossRefGoogle ScholarPubMed
Mani, E. & Wildbolz, T. (1977) The dispersal of male codling moths (Laspeyresia pomonella L.) in the Upper Rhine Valley. Zeitschrift für Angewandte Entomologie 83, 161168.CrossRefGoogle Scholar
Mantel, N. (1967) The detection of disease clustering and a generalized regression approach. Cancer Research 27, 209220.Google Scholar
Meraner, A., Brandstätter, A., Thaler, R., Aray, B., Unterlechner, M., Niederstätter, H., Parson, W., Zelger, R., Dalla Via, J. & Dallinger, R. (2008) Molecular phylogeny and population structure of the codling moth (Cydia pomonella) in Central Europe: I. Ancient clade splitting revealed by mitochondrial haplotype markers. Molecular Phylogenetics and Evolution 48, 824837.CrossRefGoogle ScholarPubMed
Myburgh, A. & Basson, S. (1961) Tortrix capensana (Wlk.) and Epichorista ionephela (Meyr.) as pests new to apples and pears (Lepidopt: Tortricidae). Journal of the Entomological Society of Southern Africa 24, 348349.Google Scholar
Nei, M. (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583590.CrossRefGoogle ScholarPubMed
Newton, P.J. (1989) Combinations of applications of chitin synthesis inhibitor and inundative releases of egg parasitoids against the false codling moth, Cryptophlebia leucotreta (Meyr.) (Lepidoptera: Tortricidae) on citrus. Bulletin of Entomological Research 79, 507519.CrossRefGoogle Scholar
Newton, P. (1998) Family Tortricidae. False codling moth Cryptophlebia leucotreta (Meyrick). Lepidoptera: Butterflies and moths. pp. 192200in Bedford, E., van den Berg, M. & de Villiers, E. (Eds) Citrus Pests in the Republic of South Africa. Nelspruit, South Africa, Institute for Tropical and Subtropical Crops, ARC.Google Scholar
Oliver, O. & Bolton, M. (1974) Floriculture under protection in South Africa. Acta Horticulturae 2, 269281.CrossRefGoogle Scholar
Omer-Cooper, J. (1939) Remarks on false codling moth. Rhodes University, Grahamstown, South Africa. Mimeograph, pp 117.Google Scholar
Peakall, R. & Smouse, P. (2005) GenAlEx 6: Genetic Analysis in Excel. Population genetic software for teaching and research. Retrieved from Australian National University, Canberra, Australia. http://www.anu.edu.au/BoZo/GenAlEx (accessed 21 December 2007).Google Scholar
Peterson, M.A. & Denno, R.F. (1998) The influence of dispersal and diet breadth on patterns of genetic isolation by distance in phytophagous insects. The American Naturalist 152, 428446.CrossRefGoogle ScholarPubMed
Quilici, S., Verbizier, B., Trahais, B. & Manikom, R. (1988) Note sur les ravageurs du litchi a la Reunion. Fruits 43, 447453.Google Scholar
Reineke, A., Karlovsky, P. & Zebitz, C. (1998) Preparation and purification of DNA from insects for AFLP analysis. Insect Molecular Biology 7, 9599.CrossRefGoogle ScholarPubMed
Riedl, H., Blomefield, T.L. & Giliomee, J.H. (1998) A century of codling moth control in South Africa II: Current and future status of codling moth management. Journal of South African Horticultural Science 8, 3254.Google Scholar
Rothschild, G.H.L. & Vickers, R.A. (1991) Biology, ecology and control of the oriental fruit moth. pp. 389412in Van der Geest, L.P.S. & Evenhuis, H.H. (Eds) World Crop Pests: Tortricid Pests. Amsterdam, The Netherlands, Elsevier.Google Scholar
Sakai, A.K., Allendorf, F.W., Holt, J.S., Lodge, D.M., Molofsky, J., With, K.A., Baughman, S., Cabin, R.J., Cohen, J.E., Ellstrand, N.C., McCauley, D.E., O'Neil, P., Parker, I.M., Thompson, J.N. & Weller, S.G. (2001) The population biology of invasive species. Annual Review of Ecology and Systematics 32, 305332.CrossRefGoogle Scholar
Schumacher, P., Weber, D.C., Hagger, C. & Dorn, S. (1997a) Heritability of flight distance for Cydia pomonella. Entomologia Experimentalis et Applicata 85, 169175.CrossRefGoogle Scholar
Schumacher, P., Weyeneth, A., Weber, D.C. & Dorn, S. (1997b). Long flights in Cydia pomonella L. (Lepidoptera: Tortricidae) measured by a flight mill: influence of sex, mating status and age. Physiological Entomology 22, 149160.CrossRefGoogle Scholar
Schwartz, A. (1981) ‘n Bydrae tot die biologie en beheer van die valskodlingmot, Cryptophlebia leucotreta (Meyr.) op nawels. PhD dissertation, University of Stellenbosch, South Africa.Google Scholar
Shannon, C.E. & Weaver, W. (1949) The Mathematical Theory of Communication. 144 pp. Urbana, Illinois, USA, University of Illinois Press.Google Scholar
Smouse, P. & Long, J. (1992) Matrix correlation analysis in anthropology and genetics. Yearbook of Physical Anthropology 35, 187213.CrossRefGoogle Scholar
Smouse, P., Long, J. & Sokal, R. (1986) Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Systematic Zoology 35, 627632.CrossRefGoogle Scholar
Sneath, P. & Sokal, R. (1963) Numerical Taxonomy. 588 pp. San Francisco, California, USA, Freeman.Google Scholar
Sziraki, G. (1979) Dispersion and movement activity of the oriental fruit moth Grapholita molesta (Busck) in large-scale orchards. Acta Phytopathologica Academiae Scientarium Hungaricae 14, 209228.Google Scholar
Thaler, R., Brandstätter, A., Meraner, A., Chabicovski, M., Parson, W., Zelger, R., Dalla Via, J. & Dallinger, R. (2008) Molecular phylogeny and population structure of the codling moth (Cydia pomonella) in Central Europe: II. AFLP analysis reflects human-aided local adaptation of a global pest species. Molecular Phylogenetics and Evolution 48, 838849.CrossRefGoogle ScholarPubMed
Timm, A., Geertsema, H. & Warnich, L. (2006a). Gene flow among Cydia pomonella (Lepidoptera: Tortricidae) geographic and host populations in South Africa. Journal of Economic Entomology 99, 341348.CrossRefGoogle ScholarPubMed
Timm, A., Geertsema, H. & Warnich, L. (2006b) Analysis of population genetic structure of two closely related tortricid species of economic importance on macadamias and litchis in South Africa. Agricultural and Forest Entomology 8, 113119.CrossRefGoogle Scholar
Timm, A., Geertsema, H. & Warnich, L. (2007) Morphological and molecular identification of economically important Tortricidae (Lepidoptera) on tropical and subtropical fruit in South Africa. African Entomology 15, 269286.CrossRefGoogle Scholar
Timm, A., Geertsema, H. & Warnich, L. (2008) Population genetic structure of the oriental fruit Grapholita molesta (Lepidoptera: Tortricidae) in South Africa, inferred by AFLP analysis. Annals of the Entomological Society of America 101, 197203.CrossRefGoogle Scholar
Van der Vrie, M. (1991) Tortricids in Ornamental Crops and Greenhouses. pp. 515540in Van der Geest, L. & Evenhuis, H. (Eds) World Crop Pests: Tortricid Pests. Amsterdam, The Netherlands, Elsevier.Google Scholar
Vekemans, X., Beauwens, T., Lemaire, M. & Roldan-Ruiz, I. (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Molecular Ecology 11, 139151.CrossRefGoogle ScholarPubMed
Vickers, R.A., Rothschild, G.H.L. & Jones, E.L. (1985) Control of the oriental fruit moth, Cydia molesta (Busck) (Lepidoptera: Tortricidae), at a district level by mating disruption with synthetic female pheromone. Bulletin of Entomological Research 75, 625634.CrossRefGoogle Scholar
Vos, P., Hogers, R., Bleeker, M., Rejans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. & Zabeau, M. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23, 44074414.CrossRefGoogle ScholarPubMed
Whitkus, R., de le Cruz, M., Mota-Bravo, L. & Gomez-Pompa, A. (1998) Genetic diversity and relationships of cacao (Theobroma cacao) in southern Mexico. Theoretical and Applied Genetics 96, 621627.CrossRefGoogle Scholar
Wright, M. (1995) Integrated pest management – concepts and potential for the control of borers on proteas. Acta Horticulturae 387, 153157.CrossRefGoogle Scholar
Yeh, F. & Yang, R. (1997). POPGENE (Version 1.31) Population Genetic Analysis Software. University of Alberta and Tim Boyle Centre for International Forestry Research, Edmonton, Alberta, Canada.Google Scholar