Skip to main content Accessibility help
×
Home

Population genetic structure and putative migration pathway of Sogatella furcifera (Horváth) (Hemiptera, Delphacidae) in Asia

  • H. Y. Nam (a1), K. S. Kim (a2) and J.-H. Lee (a1) (a3)

Abstract

The white-backed planthopper, Sogatella furcifera (Horváth) (Hemiptera, Delphacidae), has emerged as a serious rice pest in Asia. In the present study, 12 microsatellite markers were employed to investigate the genetic structure, diversity and migration route of 43 populations sampled from seven Asian countries (Bangladesh, China, Korea, Laos, Nepal, Thailand, and Vietnam). According to the isolation by distance analysis, a significant positive correlation was observed between genetic and geographic distances by the Mantel test (r2 = 0.4585, P = 0.01), indicating the role of geographic isolation in the genetic structure of S. furcifera. A population assignment test using the first-generation migrants detection method (thresholds a = 0.01) revealed southern China and northern Vietnam as the main sources of S. furcifera in Korea. Nepal and Bangladesh might be additional potential sources via interconnection with Vietnam populations. This paper provides useful data for the migration route and origin of S. furcifera in Korea and will contribute to planthopper resistance management.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Population genetic structure and putative migration pathway of Sogatella furcifera (Horváth) (Hemiptera, Delphacidae) in Asia
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Population genetic structure and putative migration pathway of Sogatella furcifera (Horváth) (Hemiptera, Delphacidae) in Asia
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Population genetic structure and putative migration pathway of Sogatella furcifera (Horváth) (Hemiptera, Delphacidae) in Asia
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

*Author for correspondence Phone: 82 2-880-4705 Fax: 82 2-873-2319 E-mail: jh7lee@snu.ac.kr

References

Hide All
Chapuis, M.P. & Estoup, A. (2007) Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution 24, 621631.
Cheng, K.G., Song, L.C., Huang, W. & Xu, X. (2014) Evaluation Report on the Projection of Climate Change in Yunnan and its Impact in the Next 10–30 Years. Beijing, China, China Meteorological Press.
Cornuet, J.M., Piry, S., Luikart, G., Estoup, A. & Solignac, M. (1999) New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153, 19892000.
Earl, D.A. & vonHoldt, B.M. (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4, 359361.
Goudet, J. (2001) Fstat, a program to estimate and test gene diversities and fixation indices (Version 2.9.3). Available online at http://www.unil.ch/izea/softwares/fstat.html.
Hu, G.W., Xie, M.X. & Wang, Y.C. (1988). A suggestion for delimitation of the incidence areas of white-backed planthopper in China. Acta Entomologica Sinica 31, 4249.
Hu, S.J., Liu, X.F., Fu, D.Y., Huang, W., Wang, X.Y., Liu, X.J., , J-P. & Ye, H. (2015) Projecting distribution of the overwintering population of Sogatella furcifera (Hemiptera: Delphacidae), in Yunnan, China with analysis on key influencing climatic factors. Journal of Insect Science 15, 148.
Hu, G., Lu, M.H., Tuan, H.A., Liu, W.C., Xie, M.C., McInerney, C.E. & Zhai, B.P. (2017) Population dynamics of rice planthoppers, Nilaparvata lugens and Sogatella furcifera (Hemiptera, Delphacidae) in Central Vietnam and its effects on their spring migration to China. Bulletin of Entomological Research 107, 369381
Kisimoto, R. & Sogawa, K. (1995) Migration of the brown planthopper Nilaparvata lugens and the white-backed planthopper Sogatella furcifera in East Asia: the role of weather and climate. pp. 6791 in Drake, V.A. & Gatehouse, A.G. (Eds) Insect Migration: Tracking Resources Through Space and Time. Cambridge, Cambridge University Press.
Krumm, J.T., Hunt, T.E., Skoda, S.R., Hein, G.L., Lee, D.J., Clark, P.L. & Foster, J.E. (2008) Genetic variability of the European corn borer, Ostrinia nubilalis, suggests gene flow between populations in the Midwestern United States. Journal of Insect Science 8, 72.
Liu, Y.B., Yang, J.L, Lin, L. & Kong, F.F. (1991) The occurrence characteristics of Sogatella furcifera and Nilaparvata lugens in Yunnan. Chinese Bulletin of Entomology 28, 257261.
Liu, J.-N., Gui, F.-R. & Li, Z.-Y. (2010) Genetic diversity of the planthopper, Sogatella furcifera in the Greater Mekong Subregion detected by inter-simple sequence repeats (ISSR) markers. Journal of Insect Science 10, 52.
Malausa, T., Dalecky, A., Ponsard, S., Audiot, P., Streiff, R., Chaval, Y. & Bourguet, D. (2007) Genetic structure and gene flow in French populations of two Ostrinia taxa: host races or sibling species? Molecular Ecology 16, 42104222.
Matsumoto, Y., Matsumura, M., Sanada-Morimura, S., Hirai, Y., Sato, Y. & Noda, H. (2013) Mitochondrial cox sequences of Nilaparvata lugens and Sogatella furcifera (Hemiptera, Delphacidae): low specificity among Asian planthopper populations. Bulletin of Entomological Research 103, 382392.
Morin, P.A., Luikart, G. & Wayne, R.K. (2004). SNPs in ecology, evolution and conservation. Trends in Ecology & Evolution 19, 208216.
Mun, J., Song, Y., Heong, K. & Roderick, G. (1999) Genetic variation among Asian populations of rice planthoppers, Nilaparvata lugens and Sogatella furcifera (Hemiptera: Delphacidae): mitochondrial DNA sequences. Bulletin of Entomological Research 89, 245253.
Nam, H.W., Coates, B.S., Kim, K.S., Park, M. & Lee, J.-H. (2015) Characterization of 12 novel microsatellite markers of Sogatella furcifera (Hemiptera: Delphacidae) identified from next-generation sequence data. Journal of Insect Science 15, 94.
Otuka, A., Matsumura, M., Watanabe, T. & Ding, T.V. (2008) A migration analysis for rice planthoppers, Sogatella furcifera (Horváth) and Nilaparvata lugens (Stål) (Homoptera: Delphacidae), emigrating from northern Vietnam from April to May. Applied Entomology and Zoology 43, 527534.
Paetkau, D., Slade, R., Burden, M. & Estoup, A. (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Molecular Ecology 13, 55.
Park, S.D.E. (2001) Trypanotolerance in West African cattle and population genetic effects of selection. PhD Thesis, University of Dublin, Dublin, Ireland.
Peakall, R. & Smouse, P.E. (2006) Genalex6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288295.
Piry, S., Alapetite, A., Cornuet, J.M., Paetkau, D., Baudouin, L. & Esop, A. (2004) Geneclass2 : a software for genetic assignment and first-generation migrant detection. Journal of Heredity 95, 536539.
Pritchard, J.K., Stephens, M. & Donnelly, P. (2000) Inference of population structure using multilocus genotype data. Genetics 155, 945959.
Qiu, Y., Jiao, X., Hu, D., Liu, F., Huang, F. & Li, R. (2016). Development and application of EST-SSR to evaluate the genetic diversity of Southeast Asian rice planthoppers. Journal of Asia-Pacific Entomology 19, 625629.
Rannala, B. & Mountain, J.L. (1997) Detecting immigration by using multilocus genotypes. Genetics 94, 91979201.
Raymond, M. & Rousset, F. (1995) An exact test for population differentiation. Evolution 49, 12801283.
Sogawa, K. (1995) Windborn displacement of the rice planthoppers related to the seasonal weather patterns in Kyushu district. Bulletin of the Kyushu National Agricultural Experiment Station 28, 219278.
Sogawa, K. (2014) Planthopper outbreaks in different paddy ecosystems in Asia: man-made hopper plagues that threatened the green revolution in rice. pp. 3363 in Heong, K.L, Cheng, J. & Esclada, M.M. (Eds) Rice Planthoppers: Ecology, Management, Socio Economics and Policy. Hangzhou, Zhejiang University Press and Dordrecht, Springer + Business Media.
Sun, J.-T., Jiang, X.-Y., Wang, M.-M. & Hong, X.-Y. (2014) Development of microsatellite markers for, and a preliminary population genetic analysis of, the white-backed planthopper. Bulletin of Entomological Research 104, 765773.
Tao, Y.M. & Sogawa, K. (2000) The survey of winter source of rice planthoppers in Yunnan, China. Yunnan Agricultural Science Technology 29, 36.
Van Oosterhout, C., Hutchinson, W.F., Wills, D.P.M. & Shipley, P. (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535538.
Wright, S. (1931) Evolution in Mendelian populations. Genetics 16, 290.

Keywords

Type Description Title
WORD
Supplementary materials

Nam et al. supplementary material
Table S1

 Word (18 KB)
18 KB
WORD
Supplementary materials

Nam et al. supplementary material
Table S2

 Word (16 KB)
16 KB
WORD
Supplementary materials

Nam et al. supplementary material
Table S3

 Word (20 KB)
20 KB
WORD
Supplementary materials

Nam et al. supplementary material
Table S4

 Word (19 KB)
19 KB
WORD
Supplementary materials

Nam et al. supplementary material
Table S5

 Word (17 KB)
17 KB
WORD
Supplementary materials

Nam et al. supplementary material
Table S6

 Word (25 KB)
25 KB
WORD
Supplementary materials

Nam et al. supplementary material
Table S7

 Word (23 KB)
23 KB
WORD
Supplementary materials

Nam et al. supplementary material
Table S8

 Word (15 KB)
15 KB
WORD
Supplementary materials

Nam et al. supplementary material
Table S9

 Word (17 KB)
17 KB
WORD
Supplementary materials

Nam et al. supplementary material
Table S10

 Word (16 KB)
16 KB
UNKNOWN
Supplementary materials

Nam et al. supplementary material
Figure S1

 Unknown (3.6 MB)
3.6 MB
UNKNOWN
Supplementary materials

Nam et al. supplementary material
Figure S2

 Unknown (6.4 MB)
6.4 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed