Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T13:44:33.669Z Has data issue: false hasContentIssue false

Parental crowding influences life-history traits in Locusta migratoria females

Published online by Cambridge University Press:  05 May 2009

M.-P. Chapuis*
Affiliation:
UMR Centre de Biologie et de Gestion des Populations (INRA/IRD/Cirad/Montpellier SupAgro), INRA, Campus international de Baillarguet, CS 30016, F-34988Montferrier-sur-Lez cedex, France Génétique et Evolution des Maladies Infectieuses, UMR 2724 CNRS-IRD, IRD, 911 avenue Agropolis, 34394Montpellier Cedex 5, France Centre de coopération internationale en recherche agronomique pour le développement Acridologie, TA A-50/D, F-34398, Montpellier, France
L. Crespin
Affiliation:
UMR Centre de Biologie et de Gestion des Populations (INRA/IRD/Cirad/Montpellier SupAgro), INRA, Campus international de Baillarguet, CS 30016, F-34988Montferrier-sur-Lez cedex, France
A. Estoup
Affiliation:
UMR Centre de Biologie et de Gestion des Populations (INRA/IRD/Cirad/Montpellier SupAgro), INRA, Campus international de Baillarguet, CS 30016, F-34988Montferrier-sur-Lez cedex, France
A. Augé-Sabatier
Affiliation:
UMR Centre de Biologie et de Gestion des Populations (INRA/IRD/Cirad/Montpellier SupAgro), INRA, Campus international de Baillarguet, CS 30016, F-34988Montferrier-sur-Lez cedex, France
A. Foucart
Affiliation:
Centre de coopération internationale en recherche agronomique pour le développement Acridologie, TA A-50/D, F-34398, Montpellier, France
M. Lecoq
Affiliation:
Centre de coopération internationale en recherche agronomique pour le développement Acridologie, TA A-50/D, F-34398, Montpellier, France
Y. Michalakis
Affiliation:
Génétique et Evolution des Maladies Infectieuses, UMR 2724 CNRS-IRD, IRD, 911 avenue Agropolis, 34394Montpellier Cedex 5, France
*
*Author for correspondence Fax: +61 (02) 9351 4119 E-mail: chapuimp@supagro.inra.fr

Abstract

Parental environments could play an important role in controlling insect outbreaks, provided they influence changes in physiological, developmental or behavioural life-history traits related to fluctuations in population density. However, the potential implication of parental influence in density-related changes in life-history traits remains unclear in many insects that exhibit fluctuating population dynamics, particularly locusts. In this study, we report a laboratory experiment, which enabled us to characterize the life-history trait modifications induced by parental crowding of female individuals from a frequently outbreaking population of Locusta migratoria (Linnaeus) (Orthoptera: Acrididae). We found that a rearing history of crowding led to reduced female oviposition times and increased offspring size but did not affect the developmental time, survival, fecundity, and the sex-ratio and the number of offspring. Because all studied females were raised in a common environment (isolation conditions), these observed reproductive differences are due to trans-generational effects induced by density. We discuss the ecological and evolutionary implications of the observed density-dependent parental effects on the life-history of L. migratoria.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrecht, F.O., Verdier, M. & Blackith, R.E. (1959) Maternal control of ovariole number in the progeny of the migratory locust. Nature 184, 103104.CrossRefGoogle Scholar
Baker, R.J. & Nelder, J.A. (1985) The GLIM system, Release 3.77, Manual. Oxford, Numerical Algorithms Group.Google Scholar
Baltensweiler, W. (1984) The role of environment and reproduction in the population dynamics of the larch bud moth, Zeiraphera diniana Gn. (Lepidoptera, Tortricidae). Advances in Invertebrate Reproduction 3, 291302.Google Scholar
Batten, A. (1967) Seasonal movements of swarms of Locusta migratoria migratorioides (R. & F.) in western Africa in 1928 to 1931. Bulletin of Entomological Research 57, 357380.CrossRefGoogle Scholar
Bernardo, J. (1996) Maternal effects in animal ecology. American Zoologist 36, 83–105.CrossRefGoogle Scholar
Besnard, A., Piry, S., Berthier, K., Lebreton, J.-D. & Streiff, R. (2007) Modeling survival and mark loss in molting animals using recapture, dead recoveries and exuvia recoveries. Ecology 88(2), 289295.CrossRefGoogle ScholarPubMed
Burnham, K.P. & Anderson, D.R. (1998) Model Selection and Inference: A Practical Information-Theoretic Approach. 353 pp. New York, Springer-Verlag.CrossRefGoogle Scholar
Burnham, K.P. & White, B.N. (2002) Evaluation of some random effects methodology applicable to bird ringing data. Journal of Applied Statistics 29, 245264.CrossRefGoogle Scholar
Byers, J.A. (1991) Pheromones and Chemical Ecology of locusts. Biological Reviews 66, 347378.CrossRefGoogle Scholar
Chapuis, M.-P., Estoup, A., Augé-Sabatier, A., Foucart, A., Lecoq, M. & Michalakis, Y. (2008a) Genetic variation for parental effects on propensity to gregarise in Locusta migratoria. BMC Evolutionary Biology 8, 37.Google ScholarPubMed
Chapuis, M.-P., Lecoq, M., Loiseau, A., Sword, G.A., Piry, S. & Estoup, A. (2008b) Worldwide microsatellite genetic variation in Locusta migratoria, an outbreaking species prone to null alleles. Molecular Ecology 17(16), 36403653.CrossRefGoogle Scholar
Chitty, D. (1967) The natural selection of self-regulatory behaviour in animal populations. Proceedings of the Ecological Society of Australia 2, 5178.Google Scholar
COPR (1982) The Locust and Grasshopper Agricultural Manual. 690 pp. London, Centre for Overseas Pest Research.Google Scholar
Crawley, M.J. (1993) GLIM for Ecologists. 379 pp. Oxford, Blackwell Scientific Publications.Google Scholar
Davey, J.T. (1956) The seasonal migrations and dynamics of populations of the African migratory Locust (Locusta migratoria migratorioides Reiche and Fairmaire) in the outbreak area (Orth.). Bulletin de la Société Entomologique de France 61, 1824.CrossRefGoogle Scholar
Dempster, J.P. (1963) The population dynamics of grasshoppers and locusts. Biological Reviews 38, 490529.CrossRefGoogle Scholar
Dirsh, V.M. (1950) A practical table for the determination of sexes of nymphs of Locusta migratoria migratorioides (R & F). Proceedings of the Royal Entomological Society of London, Series B 19, 136137.Google Scholar
Dirsh, V.M. (1953) Morphometrical studies on phases of the desert locust. Anti-Locust Bulletin 16, 134.Google Scholar
Farrow, R.A. (1974) Comparative plague dynamics of tropical Locusta (Orthoptera, Acrididae). Bulletin of Entomological Research 64, 401411.CrossRefGoogle Scholar
Fox, C.W. & Mousseau, T.A. (1998) Maternal effects as adaptations for transgenerational phenotypic plasticity in insects. pp. 159177in Mousseau, T.A. & Fox, C.W. (Eds) Maternal Effects as Adaptations. New York, Oxford University Press.Google Scholar
Ginzburg, L.R. (1998) Inertial growth: population dynamics based on maternal effects. pp. 4253in Mousseau, T.A. & Fox, C.W. (Eds) Maternal Effects as Adaptations. New York, Oxford University Press.CrossRefGoogle Scholar
Ginzburg, L.R. & Taneyhill, D.E. (1994) Population cycles of forest Lepidoptera: a maternal effect hypothesis. Journal of Animal Ecology 63, 7992.CrossRefGoogle Scholar
Hoste, B., Luyten, L., Claeys, I., Clynen, E., Rahman, M.M., De Loof, A. & Breuer, M. (2002) An improved breeding method for solitarious locusts. Entomologia Experimentalis et Applicata 104, 281288.CrossRefGoogle Scholar
Hunter, M.D. (2002) Maternal effects and the population dynamics of insects on plants. Agricultural and Forest Entomology 4, 19.CrossRefGoogle Scholar
Hunter-Jones, P. (1958) Laboratory studies on the inheritance of phase characters in locusts. Anti-Locust Bulletin 29, 135.Google Scholar
Islam, M.S., Roessingh, P., Sinervo, B. & McCaffery, A.R. (1994) Effects of population density experienced by parents during mating and oviposition on the phase of hatchlings desert locusts, Schistocerca gregaria. Proceedings of Royal Society of London, Series B 257, 9398.Google Scholar
Lauga, J. & Hatté, M. (1978) L'activité grégarisante du sable de ponte chez Locusta migratoria L.: action sur le comportement et la reproduction des individus. Annales des Sciences Naturelles 20, 3752.Google Scholar
Lay, M., Zissler, D. & Hartmann, R. (1999) Ultrastructural and functional aspects of the spermatheca of the African Migratory Locust Locusta migratoria migratorioides (Reiche and Fairmaire) (Orthoptera: Acrididae). International Journal of Insect Morphology and Embryology 28, 349361.CrossRefGoogle Scholar
Lebreton, J.-D., Burnham, K.P., Clobert, J. & Anderson, D.R. (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecological Monograph 62, 67–118.CrossRefGoogle Scholar
Lecoq, M. (1975) Les déplacements par vol du criquet migrateur malgache en phase solitaire: leur importance sur la dynamique des populations et la grégarisation. Thèse de Doctorat d'Etat ès Science. Paris, Ministère de la Coopération.Google Scholar
Littell, R.C., Milliken, G.A., Stroup, W.W. & Wolfinger, R.D. (1996) SAS System for Mixed Models, SAS Institute, Cary, NC.Google Scholar
Loher, W. (1961) The chemical acceleration of the maturation process and its hormonal control in the male of the desert locust. Proceedings of the Royal Society of London, Series B 153, 380397.Google Scholar
Manly, B.F.J. (1985) The Statistics of Natural Selection on Animal Populations. 500 pp. London, Chapman & Hall.CrossRefGoogle Scholar
Mitter, C. & Schneider, J.C. (1987) Genetic change and insect outbreaks. pp. 502532in Barbosa, P. & Schultz, J.C. (Eds) Insect outbreaks. New York, Academic Press.Google Scholar
Neville, A.C. (1963a) Daily growth layers in locust rubber-like cuticle influenced by an external rhythm. Journal of Insect Physiology 9, 177186.CrossRefGoogle Scholar
Neville, A.C. (1963b) Growth and deposition of resilin and chitin in locust rubber-like cuticle. Journal of Insect Physiology 9, 265278.CrossRefGoogle Scholar
Nichols, J.D., Sauer, J.R., Pollock, K.H. & Hestbeck, J.B. (1992) Estimating transition probabilities for stage-based population projection matrices using capture-recapture data. Ecology 73, 306311.CrossRefGoogle Scholar
Norris, N.J. (1950) Reproduction in the African Migratory locust (Locusta migratoria migratorioides R. & F.) in relation to density and phase. Anti-Locust Bulletin 6, 150.Google Scholar
Pener, M.P. (1991) Locust phase polymorphism and its endocrine relations. Advances in Insect Physiology 23, 179.CrossRefGoogle Scholar
Plaistow, S.J., Lapsley, C.T. & Benton, T.G. (2006) Context-dependent intergenerational effects: the interaction between past and present environments and its effect on population dynamics. The American Naturalist 167, 206215.CrossRefGoogle ScholarPubMed
Pradel, R., Wintrebert, C.M.A. & Gimenez, O. (2003) A proposal for a goodness-of-fit to the Arnason-Schwarz multisite capture-recapture model. Biometrics 59, 4353.CrossRefGoogle Scholar
Randriatmanantsoa, M. (1998) Manuel sur la lutte antiacridienne. Madagascar, Direction de la protection des végétaux et Deutsche Gesellschaft für Technische Zusammenarbeit GmbH, Antananarivo.Google Scholar
Reznick, D., Bryant, M.J. & Bashey, F. (2002) r- and K-selection revisited: the role of population regulation in life-history evolution. Ecology 83, 15091520.CrossRefGoogle Scholar
Roessingh, P. & Simpson, S.J. (1994) The time-course of behavioural change in nymphs of the desert locust, Schistocerca gregaria. Physiological Entomology 19, 191197.CrossRefGoogle Scholar
Roffey, J. & Popov, G.B. (1968) Environmental and behavioural processes in a desert locust outbreak. Nature 219, 446450.CrossRefGoogle Scholar
Rossiter, M.C. (1992) The impact of resource variation on population quality in herbivorous insects: a critical component of population dynamics. pp. 1342in Hunter, M.D., Ohgushi, T. & Price, P.W. (Eds) Resource Distribution and Animal-Plant Interactions. San Diego, CA, Acadamic Press.CrossRefGoogle Scholar
Rossiter, M.C. (1994) Maternal effects hypothesis of herbivore outbreak. BioScience 44, 752762.CrossRefGoogle Scholar
Rossiter, M.C. (1996) The incidence and consequences of inherited environmental effects. Annual Review of Ecology and Systematics 27, 451476.CrossRefGoogle Scholar
Smith, C.C. & Fretwell, S.D. (1974) The optimal balance between size and number of offspring. American Naturalist 109, 499506.CrossRefGoogle Scholar
Song, H. (2004) Post-adult emergence development of genitalic structures in Schistocerca Stål and Locusta L. (Orthoptera: Acrididae). Proceedings of the Entomological Society of Washington 106, 181191.Google Scholar
Spieß, R. & Rose, U. (2004) Juvenile hormone-dependent motor activation in the adult locust Locusta migratoria. Journal of Comparative Physiology A 190, 883894.Google ScholarPubMed
Têtefort, J.P. & Wintrebert, D. (1966) Effets édaphiques et biotiques de l'inversion pluviométrique des saisons, important facteur de pullulation des acridiens migrateurs dans le sud-ouest malgache. Entomophaga 2, 305310.CrossRefGoogle Scholar
Uvarov, B.P. (1966) Grasshoppers and Locusts, Vol. 1. 481 pp. Cambridge, UK, Cambridge University Press.Google Scholar
Waloff, Z. (1962) Local outbreaks of the African migratory locust in the Red Sea area. FAO Plant Protection Bulletin 10, 6163.Google Scholar
White, G.C. & Burnham, K.P. (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46, 120139.CrossRefGoogle Scholar
Wintrebert, D. (1970) Identité, écologie et comportement du criquet migrateur dans le sud-ouest Malgache. Annales de la Société Entomologique de France 6, 35–152.CrossRefGoogle Scholar
Zera, A.J. & Harshman, L.G. (2001) The physiology of life history trade-offs in animals. Annual Review of Ecology and Systematics 32, 95–126.CrossRefGoogle Scholar