Skip to main content Accessibility help

Oviposition preferences of the mosquito Aedes aegypti Linnaeus, 1762 (Culicidae): an urban environment bioassay

  • N. Kroth (a1), G.D. Cozzer (a2), G. de Carvalho (a2), A.S. Cassol (a1), J. Breaux (a3), J.A. Lutinski (a4), M.A. Busato (a4), W.A. Roman Junior (a4), José Junior dos Santos (a2) and D. Albeny-Simões (a1) (a2)...


The establishment of an invasive species depends on reproductive success and dispersion capability in the new environment. One of the striking examples of invasion in urban environments is the mosquito Aedes aegypti Linnaeus, 1762 (Culicidae). The success of this species is primarily attributed to its ability to colonize urban environments, and some of the important adaptive strategies associated with this ability is the preference for humans as a blood source and intense occupation of residential (indoor) environments. This study evaluated the effects of location (indoor vs. outdoor) and water nutrient level (% organic matter) on the oviposition preference of A. aegypti in an urban environment. We used oviposition choice experiments to evaluate mosquito oviposition in containers holding 1:1 vs 1:0 ratios of water: organic matter placed indoors and outdoors. Eggs were sampled once per week for nine weeks. Our results revealed a strong oviposition preference for outdoor containers, with a significant preference for containers with higher concentrations of organic matter during the fifth to ninth weeks. However, mosquitoes occupying indoor environments did not prefer to lay eggs in containers with lower levels of organic matter. A better understanding of the preferences of A. aegypti regarding the nutrient level and location of oviposition containers can increase our understanding of the behavioral factors allowing mosquitoes to utilize anthropogenic environments.


Corresponding author

*Author for correspondence Phone: 55 49 3321-8016 Fax: 55 49 3321-8220 E-mail:


Hide All
Albeny-Simões, D., Murrell, E.G., Elliot, S.L., Andrade, M.R., Lima, E., Juliano, S.A. & Vilela, E.F. (2014) Attracted to the enemy: Aedes aegypti prefers oviposition sites with predator-killed conspecifics. Oecologia 175, 481492.
Bentley, M.D. & Day, J.F. (1989) Chemical ecology and behavioral aspects of mosquito oviposition. Annual Review of Entomology 34, 401421.
Bentley, M.D., McDaniel, I.N., Lee, H.P., Stiehl, B. & Yatagai, M. (1976) Studies of Aedes triseriatus ovipositions attractants produced by larvae of Aedes triseriatus and Aedes atropalmus (Diptera, Culicidae). Journal of Medical Entomology 13, 112115.
Brown, J.E., Evans, B.R., Zheng, W., Obas, V., Barrera-Martinez, L., Egizi, A., Zhao, H., Caccone, A. & Powell, J.R. (2014) Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito Evolution. Wiley Online Library 68, 514525.
Carrieri, M., Bacchi, M., Bellini, R. & Maini, S. (2003) On the competition occurring between Aedes albopictus and Culex pipiens (diptera: Culicidae) in Italy. Environmental Entomology 32, 13131321.
Cogliatti-Carvalho, L., Rocha-Pessôa, T.C., Nunes-Freitas, A.F. & Rocha, C.F.D. (2010) Volume de água armazenado no tanque de bromélias, em restingas da costa brasileira. Acta Botânica Brasileira 24, 8495.
Colton, Y.M., Chadee, D.D. & Severson, D.W. (2003) Natural skip oviposition of the mosquito Aedes aegypti indicated by codominant genetic markers. Medical and Veterinary Entomology 17, 195204.
Costanzo, K., Mormann, K. & Juliano, S. (2005) Asymmetrical competition and patterns of abundance of Aedes albopictus and Culex pipiens (diptera: Culicidae). Journal of Medical Entomology 42, 559.
Crawley, M.J. (1993) GLIM for Ecologists. Blackwell Scientific Publications, Oxford.
Eitam, A., Blaustein, L. & Mangel, M. (2002) Effects of Anisops sardea (Hemiptera: No- tonectidae) on oviposition habitat selection by mosquitoes and other dipterans and on community structure in artificial pools. Hydrobiologia 485, 183189.
Forattini, O.P. & Brito, M. (2003) Reservatórios domiciliares de água e controle do Aedes aegypti. Revista de Saúde Pública 37, 676677.
Hufbauer, R., Facon, B., Ravigne, V., Turgeon, J., Foucaud, J., Lee, C., Rey, O. & Estoup, A. (2012) Anthropogenically induced adaptation to invade (AIAI): contemporary adaptation to human-altered habitats within the native range can promote invasions. Evolutionary Applications 5, 89101.
Jackson, R.R., Nelson, X.J. & Sune, G.O. (2005) A spider that feeds indirectly on vertebrate blood by choosing female mosquitoes as prey. Proceedings of the National Academy of Sciences of the United States of America 102, 1515515160.
Juliano, S. (2009) Species interactions among larval mosquitoes: context dependence across habitat gradients. Annual Review of Entomology 54, 3756.
Juliano, S.A. & Lounibos, L.P. (2016) 14 invasions by mosquitoes: the roles of behaviour across the life cycle. Biological Invasions and Animal Behaviour 245, 221244.
Juliano, S., Lounibos, L. & O'Meara, G. (2004) A field test for competitive effects of Aedes albopictus on A. aegypti in south Florida: differences between sites of coexistence and exclusion? Oecologia 139, 583593.
Kramer, W. & Mulla, M. (1979) Oviposition attractants and repellents of mosquitoes: oviposition responses of Culex mosquitoes to organic infusions. Environmental Entomology 8, 11111117.
Leahy, S.M., Vandehey, R. & Booth, K. (1978) Differential response to oviposition site by feral and domestic populations of Aedes aegypti (diptera: Culicidae). Bulletin of Entomological Research 68, 455463.
Lima-Camara, T.N.D., Honório, N.A. & Oliveira, R.L. (2006) Frequency and spatial distribution of Aedes aegypti and Aedes albopictus (diptera, culicidae) in Rio de Janeiro, Brazil. Cadernos de Saúde Pública 22, 20792084.
Lima-Camara, T.N., Urbinatti, P.R. & Chiaravalloti-Neto, F. (2016) Encontro de aedes aegypti em criadouro natural de área urbana, São Paulo, SP, Brasil. Revista de Saúde Pública 50, 14.
Lounibos, L.P. (2002) Invasions by insect vectors of human disease. Annual Review of Entomology 47, 233266.
McBride, C.S., Baier, F., Omondi, A.B., Spitzer, S.A., Lutomiah, J., Sang, R., Ignell, R. & Vosshall, L.B. (2014) Evolution of mosquito preference for humans linked to an odorant receptor. Nature 515, 222227.
Ponnusamy, L., Xu, N., Nojima, S., Wesson, D.M., Schal, C. & Apperson, C.S. (2008) Identification of bacteria and bacteria-associated chemical cues that mediate oviposition site preferences by Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America 105, 92629267.
Ponnusamy, L., Wesson, D.M., Arellano, C., Schal, C. & Apperson, C.S. (2010) Species composition of bacterial communities influences attraction of mosquitoes to experimental plant infusions. Microbial Ecology 59, 158173.
Powell, J.R. & Tabachnick, W.J. (2013) History of domestication and spread of Aedes aegypti a review. Memorias do Instituto Oswaldo Cruz 108, 1117.
R Development Core Team R (2014) R: A Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing.
Sant'ana, A.L., Roque, R.A. & Eiras, A.E. (2006) Characteristics of grass infusions as oviposition attractants to Aedes (Stegomyia) (Diptera: Culicidae). Journal of Medical Entomology 43, 214220.
Scott, T.W., Morrison, A.C., Lorenz, L.H., Clark, G.G., Strickman, D., Kittayapong, P., Zhou, H. & Edman, J.D. (2000) Longitudinal studies of Aedes aegypti (diptera: Culicidae) in Thailand and Puerto Rico: population dynamics. Journal of Medical Entomology 37, 7788.
Silberbush, A. & Blaustein, L. (2008) Scientific Note Oviposition habitat selection by a mosquito in response to a predator: are predator-released kairomones air-borne cues? Journal of Vector Ecology 33, 208211.
Silberbush, A., Markman, S., Lewinsohn, E., Bar, E., Cohen, J.E. & Blaustein, L. (2010) Predator-released hydrocarbons repel oviposition by a mosquito. Ecology Letters 13, 11291138.
Silva, A.M. (2004) Bebedouro doméstico como criadouro de Aedes aegypti. Revista de Saúde Pública 38, 139140.
Tabachnick, W. & Powell, J. (1979) A world-wide survey of genetic variation in the yellow fever mosquito, Aedes aegypti. Genetics Research 34, 215229.
Uitregt, V.O.V., Hurst, T.P. & Wilson, R.S. (2012) Reduced size and starvation resistance in adult mosquitoes, Aedes notoscriptus, exposed to predation cues as larvae. Journal of Animal Ecology 81, 108115.
Westby, K.M. & Juliano, S.A. (2017) The roles of history: age and prior exploitation in aquatic container habitats have immediate and carry-over effects on mosquito life history. Ecological Entomology, Wiley Online Library, 42, 704711.
Westphalen, A.P.C., Coração, G. & Benetti, A.D. (2016) Utilização de carvão ativado biológico para o tratamento de água para consumo humano. Engenharia sanitária e ambiental: órgão oficial de informação técnica da ABES 21, 425436.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed