Skip to main content Accessibility help
×
Home

Including climate change in pest risk assessment: the peach fruit fly, Bactrocera zonata (Diptera: Tephritidae)

  • W.L. Ni (a1) (a2), Z.H. Li (a1), H.J. Chen (a2), F.H. Wan (a3), W.W. Qu (a1), Z. Zhang (a1) and D.J. Kriticos (a4)...

Abstract

Bactrocera zonata (Saunders) is one of the most harmful species of Tephritidae. It causes extensive damage in Asia and threatens many countries located along or near the Mediterranean Sea. The climate mapping program, CLIMEX 3.0, and the GIS software, ArcGIS 9.3, were used to model the current and future potential geographical distribution of B. zonata. The model predicts that, under current climatic conditions, B. zonata will be able to establish itself throughout much of the tropics and subtropics, including some parts of the USA, southern China, southeastern Australia and northern New Zealand. Climate change scenarios for the 2070s indicate that the potential distribution of B. zonata will expand poleward into areas which are currently too cold. The main factors limiting the pest's range expansion are cold, hot and dry stress. The model's predictions of the numbers of generations produced annually by B. zonata were consistent with values previously recorded for the pest's occurrence in Egypt. The ROC curve and the AUC (an AUC of 0.912) were obtained to evaluate the performance of the CLIMEX model in this study. The analysis of this information indicated a high degree of accuracy for the CLIMEX model. The significant increases in the potential distribution of B. zonata projected under the climate change scenarios considered in this study suggest that biosecurity authorities should consider the effects of climate change when undertaking pest risk assessments. To prevent the introduction and spread of B. zonata, enhanced quarantine and monitoring measures should be implemented in areas that are projected to be suitable for the establishment of the pest under current and future climatic conditions.

Copyright

Corresponding author

*Authors for correspondence China Agricultural University and Chinese Academy of Inspection and Quarantine contributed equally to this paper. Fax: 8610-62733000 E-mail: lizh@cau.edu.cn

References

Hide All
Abdel-Galil, F.A. (2007) Final report for the project no PS-FAI-020-03, ‘Study on biological means for controlling the Mediterranean fruit fly Ceratitis capitata (Wiedemann) in New Valley Governorate’ and submitted by the Academy of Scientific Research and Technology, Cairo, Egypt 73.
Agarwal, M.L., Kumar, P. & Kumar, V. (1999) Population suppression of Bactrocera dorsalis (Hendel) by Bactrocera zonata (Saunders) (Diptera: Tephritidae) in North Bihar. Shashpa 6, 189191.
Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Ecology 43, 12231232.
Baker, R.H.A., Sansford, C.E., Jarvis, C.H., Cannon, R.J.C., MacLeod, A. & Walters, K.F.A. (2000) The role of climate mapping in predicting the potential geographical distribution of non-indigenous pests under current and future climates. Agriculture, Ecosystems and Environment 82, 5771.
Bourdôt, G.W., Lamoureaux, S.L., Watt, M.S., Manning, L.K. & Kriticos, D.J. (2010) The potential global distribution of the invasive weed Nassella neesiana under current and future climates. Biological Invasions (doi: 10.1007/s10530-010-9905-6).
Butani, D.K. (1976) Insect pests of fruit crops and their control: custard apple. Pesticides 10, 2728.
Butani, D.K. & Verma, S. (1977) Pests of vegetables and their control: cucurbits. Pesticides 11, 3741.
CABI (2010) Crop Protection Compendium. Available online at http://www.cabi.org/cpc/ (accessed 26 September 2010).
Carey, J.R. & Dowell, R.V. (1989) Exotic fruit pests and California agriculture. California Agriculture 43, 3840.
Chris, K.F., Thomas, R.K. & Salinger, M.J. (2002) Observed climate variability and change. weather 57, 269278.
Duyck, P.F., Sterlin, J.F. & Quilici, S. (2004) Survival and development of different life stages of Bactrocera zonata reared at five constant temperatures compared to other fruit fly species. Bulletin of Entomological Research 94, 8993.
Duyck, P.F., David, P., Pavoine, S. & Quilici, S. (2006) Climatic niche partitioning following successive invasions by fruit flies in La Réunion. Journal of Animal Ecology 75, 518526.
FAO (Food & Agriculture Organisation) (2000) Action plan peach fruit fly, Bactrocera zonata (Saunders) [M] 148.
Fielding, A.H. & Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24, 3849.
Geng, J., Li, Z.H., Rajotte, E.G., Wan, F.H., Lu, X.Y. & Wang, Z.L. (2011) Potential geographical distribution of Rhagoletis pomonella (Diptera: Tephritidae) in China. Insect Science 00, 18.
Grewal, J.S. & Malhi, C.S. (1987) Prunus persica Batsch damage by birds and fruit fly pests in Ludhiana (Punjab). Journal of Entomological Research 11, 119120.
Hanley, J.A. & McNeil, B.J. (1982) The meaning and use of the area under a Receiver Operating Characteristic (ROC) curve. Radiology 143, 2936.
Hashem, A.G., Mohamed, S.M.A. & El-Wakkad, M.F. (2001) Diversity and abundance of Mediterranean and peach fruit flies (Diptera: Tephritidae) in different horticultural orchards. Egyptian Journal of Applied Science 16, 303314.
IPCC-TGCIA (1999) Guidelines on the use of scenario data for climate impact and adaptation assessment. Prepared by Carter, T.R., Hulme, M. & Lal, M. Intergovernmental Panel of Climate Change.
IPCC (2001) Climate change 2001: synthesis report. Question 1–9. Prepared by Intergovernmental Panel of Climate Change.
IPCC (2007) Climate change 2007: synthesis report. Prepared by Intergovernmental Panel of Climate Change.
Iwahashi, O. & Routhier, W. (2001) Aedeagal length and its variation of the peach fruit fly, Bactrocera zonata, which recently invaded Egypt. Applied Entomology and Zoology 36, 1317.
Kapoor, V.C. (1993) Indian Fruit Flies: Insecta – Diptera: Tephritidae. New Delhi, India, Oxford & IBH Publishing Co.
Kapoor, V.C. & Agarwal, M.L. (1983) Fruit flies and their increasing host plants in India. pp. 252257 in Proceedings of the CEC/IOBC International Symposium. 16–19 November 1982, Athens, Greece.
Kraemer, H.C. (1988) Assessment of 2×2 associations: generalization of signal-detection methodology. American Statistical Association 42, 3749.
Kriticos, D.J. (1996) The role of modelling in weed management. pp. 560569in Shepherd, R.C.H. (Ed) Proceedings of the Eleventh Australian Weeds Conference. Weed Science Society of Victoria, 30 September–3 October 1996, Melbourne, Australia.
Kriticos, D.J., Sutherst, R.W., Brown, J.R., Adkins, S.A. & Maywald, G.F. (2003a) Climate change and biotic invasions: a case history of a tropical woody vine. Biological Invasions 5, 145165.
Kriticos, D.J., Sutherst, R.W., Brown, J.R., Adkins, S.A. & Maywald, G.F. (2003b) Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia. Journal of Applied Ecology 40, 111124.
Kriticos, D.J., Alexander, N.S. & Kolomeitz, S.M. (2006) Predicting the potential geographic distribution of weeds in 2080. pp. 2734in Preston, C.Watts, J.H. & Crossman, N.P. (Eds) Proceedings of the Fifteenth Australian Weeds Conference. Weed Science Society of Victoria, 24–28 September 2006, Adelaide, Australia.
Lv, W.G., Lin, W., Li, Z.H., Geng, J., Wan, F.H. & Wang, Z.L. (2008) Potential geographic distribution of Ber fruit fly, Carpomya vesuviana Costa, in China. Plant Quarantine 6, 343347.
Mahmoud, Y.A. (2004). Studies on the peach fruit fly Bactrocera zonata (Saunders) with special reference to the effect of gamma-ray. PhD thesis, Menoufia University.
McPherson, J.M., Jetz, W. & Rogers, D.J. (2004) The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? Journal of Applied Ecology 41, 811823.
Mitchell, T.D., Carter, T.R., Jones, P.D., Hulme, M. & New, M. (2004) A Comprehensive Set of Climate Scenarios for Europe and the Globe: The Observed Record (1900–2000) and 16 Scenarios (2000–2100). University of East Anglia. Working Paper.
Ni, W.L., Li, Z.H., Wan, F.H. & Wang, Z.L. (2009) Potential geographic distribution of Bactrocera scutellata (Hendel), in China. Chinese Journal of Biological Control (add) 2, 6167.
OEPP/EPPO (2005) Bulletin OEPP/EPPO Bulletin 35, 371373.
Qu, W.W., Li, Z.H., Wan, F.H. & Wang, Z.L. (2009) Potential geographic distribution of papaya fruit fly, in China. Chinese Journal of Biological Control (add) 2, 6873.
Qureshi, Z.A., Hussain, T. & Siddiqui, Q.H. (1991) Relative preference of mango varieties by Dacus zonatus and D. dorsalis. Pakistan Journal of Zoology 23, 8587.
Qureshi, Z., Hussain, T., Carey, J.R. & Dowell, R.V. (1993) Effects of temperature on development of Bactrocera zonata (Saunders) (Diptera: Tephritidae). Pan-Pacific Entomologist 69(1), 7176.
Robertson, E.A. & Zweig, M.H. (1981) Use of receiver operating curves to evaluate the clinical performance of analytical systems. Clinical Chemistry 27, 15691574.
Robertson, E.A., Zweig, M.H. & Van, S.M.D. (1983) Evaluating the clinical accuracy of laboratory tests. American Journal of Clinical Pathology 79, 7886.
Spaugy, L. (1988) Fruit flies: two more eradication projects over. Citrograph 73, 168.
Stephens, A.E.A., Kriticos, D.J. & Leriche, A. (2007) The current and future potential geographical distribution of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Bulletin of Entomological Research 97, 369378.
Sutherst, R.W. & Maywald, G.F. (2005) A climate model of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae): implications for invasion of new regions, particularly Oceania. Environmental Entomology 34, 317335.
Sutherst, R.W., Collyer, B.S. & Yonow, T. (2000) The vulnerability of Australian horticulture to the Queensland fruit fly, Bactrocera tryoni, under climate change. Australian Journal of Agricultural Research 51, 467480.
Sutherst, R.W., Maywald, G.F., Bottomley, W. & Bourne, A. (2004) CLIMEX v2 CD and User's Guide. Melbourne, Hearne Scientific Software Pty Ltd.
Sutherst, R.W., Maywald, G.F. & Kriticos, D.J. (2007) CLIMEX Version 3: User's Guide. Hearne Scientific Software Pty Ltd. Available online at www.Hearne.com.au (accessed 12 November 2008).
Swets, J.A. (1988) Measuring the accuracy of diagnostic systems. Science 240, 12851293.
Syed, R.A., Ghani, M.A. & Murtaza, M. (1970) Studies on the trypetids and their natural enemies in West Pakistan. III. Dacus zonatus (Saunders). Technical Bulletin, Commonwealth Institute of Biological Control.
Van Steirteghem, A.C., Zweig, M.H., Robertson, E.A., Bernard, R.M., Putzeys, G.A. & Bieva, C. (1982) Comparison of the effectiveness of four clinical chemical assays in classifying patients’ chest pain. Clinical Chemistry 28, 13191324.
Vera, M.T., Rodriguez, R., Segura, D.F., Cladera, J.L. & Sutherst, R.W. (2002) Potential geographical distribution of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), with emphasis on Argentina and Australia. Environmental Entomology 31, 10091022.
Wang, J.W., Li, Z.H., Chen, H.J., Geng, J., Wang, Z.L. & Wan, F.H. (2009) The potential geographic distribution of Bactrocera tsuneonis (Diptera: Tephritidae). Plant Quarantine 1, 14.
Wang, Y.S., Xie, B.Y., Wan, F.H., Xiao, Q.M. & Dai, L.Y. (2007) Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models. Biodiversity Science 15(4), 365372.
Watt, M.S., Kriticos, D.J. & Manning, L.K. (2009) The current and future potential distribution of Melaleuca quinquenervia. European Weed Research Society Weed Research 49, 381390.
White, I.M. & Elson-Harris, M.M. (1992) Fruit Flies of Economic Significance: Their Identification and Bionomics. Wallingford, UK, CAB International.
Worner, S.P. (1988) Ecoclimatic assessment of potential establishment of exotic pests. Journal of Economic Entomology 81, 973983.
Ye, Q. & Huang, X.J. (2002) World mango production and trade. Chinese Jounral of Tropical Agriculture 22(6), 4449.
Yonow, T. & Sutherst, R.W. (1998) The geographical distribution of the Queensland fruit fly, Bactrocera tryoni, in relation to climate. Australian Journal of Agricultural Research 49, 935953.
Zweig, M.H. & Campbell, G. (1993) Receiver-operating characteristics (ROC) plots: a fundamental evaluation tool in clinical medicine. Clinical Chemistry 39, 561577.
Zweig, M.H. & Robertson, E.A. (1982) Why we need better test evaluations. Clinical Chemistry 28, 12721276.
Zweig, M.H., Broste, S.K. & Reinhart, R.A. (1992) ROC curve analysis: an example showing the relationships among serum lipid and apolipoprotein concentration in identifying patients with coronary artery disease. Clinical Chemistry 38, 14251428.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed