Skip to main content Accessibility help
×
Home

Global phylogenetic relationships, population structure and gene flow estimation of Trialeurodes vaporariorum (Greenhouse whitefly)

  • J.M. Wainaina (a1), P. De Barro (a2), L. Kubatko (a3), M. A. Kehoe (a4), J. Harvey (a5) (a6), D. Karanja (a7) and L. M. Boykin (a1)...

Abstract

Trialeurodes vaporariorum (Westwood, 1856) (Greenhouse whitefly) is an agricultural pest of global importance. It is associated with damage to plants during feeding and subsequent virus transmission. Yet, global phylogenetic relationships, population structure, and estimation of the rates of gene flow within this whitefly species remain largely unexplored. In this study, we obtained and filtered 227 GenBank records of mitochondrial cytochrome c oxidase I (mtCOI) sequences of T. vaporariorum, across various global locations to obtain a final set of 217 GenBank records. We further amplified and sequenced a ~750 bp fragment of mtCOI from an additional 31 samples collected from Kenya in 2014. Based on a total of 248 mtCOI sequences, we identified 16 haplotypes, with extensive overlap across all countries. Population structure analysis did not suggest population differentiation. Phylogenetic analysis indicated the 2014 Kenyan collection of samples clustered with a single sequence from the Netherlands to form a well-supported clade (denoted clade 1a) nested within the total set of sequences (denoted clade 1). Pairwise distances between sequences show greater sequence divergence between clades than within clades. In addition, analysis using migrate-n gave evidence for recent gene flow between the two groups. Overall, we find that T. vaporariorum forms a single large group, with evidence of further diversification consisting primarily of Kenyan sequences and one sequence from the Netherlands forming a well-supported clade.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Global phylogenetic relationships, population structure and gene flow estimation of Trialeurodes vaporariorum (Greenhouse whitefly)
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Global phylogenetic relationships, population structure and gene flow estimation of Trialeurodes vaporariorum (Greenhouse whitefly)
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Global phylogenetic relationships, population structure and gene flow estimation of Trialeurodes vaporariorum (Greenhouse whitefly)
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

*Author for correspondence Phone: +61469733615 Fax: +61864884401 E-mail: james.wainaina@research.uwa.edu.au; jwmbora@yahoo.com

References

Hide All
Abdullahi, I., Winter, S., Atiri, G.I. & Thottappilly, G. (2003) Molecular characterization of whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) populations infesting cassava. Bulletin of Entomological Research 93, 97106. doi: 10.1079/BER2003223.
Anderson, P.K., Cunningham, A.A., Patel, N.G., Morales, F.J., Epstein, P.R. & Daszak, P. (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology and Evolution 19(10), 535544. doi:10.1016/j.tree.2004.07.021
Ateka, E.M., Njeru, R.W., Kibaru, A.G., Kimenju, J.W., Barg, E., Gibson, R.W. & Vetten, H.J. (2004) Identification and distribution of viruses infecting sweet potato in Kenya. Annals of Applied Biology 144, 371379. doi: 10.1111/j.1744-7348.2004.tb00353.x.
Ashfaq, M., Hebert, P.D., Mirza, M.S., Khan, A.M., Mansoor, S., Shah, G.S. & Zafar, Y. (2014) DNA barcoding of Bemisia tabaci complex (Hemiptera: Aleyrodidae) reveals southerly expansion of the dominant whitefly species on cotton in Pakistan. PloS ONE 9(8), e104485.
Bandelt, H.J., Forster, P. & Rohl, A. (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology 16(1), 3748. doi:10.1093/oxfordjournals.molbev.a026036
Beerli, P. & Palczewski, M. (2010) Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185(1), 313326. http://doi.org/10.1534/genetics.109.112532
Boykin, L.M. & De Barro, P.J. (2014) A practical guide to identifying members of the Bemisia tabaci species complex: and other morphologically identical species. Frontiers in Ecology and Evolution 2(August), 15. doi:10.3389/fevo.2014.00045
Boykin, L.M., Shatters, R.G., Rosell, R.C., McKenzie, C.L., Bagnall, R.A., De Barro, P. & Frohlich, D.R. (2007) Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. Molecular Phylogenetics and Evolution 44, 13061319. doi:10.1016/j.ympev.2007.04.020
Boykin, L.M., Bell, C.D., Evans, G., Small, I. & De Barro, P.J. (2013) Is agriculture driving the diversification of the Bemisia tabaci species complex (Hemiptera: Sternorrhyncha: Aleyrodidae)?: dating, diversification and biogeographic evidence revealed. BMC Evolutionary Biology 13(1), 228. doi:10.1186/1471-2148-13-228
Colvin, J., Omongo, C.A., Govindappa, M.R., Stevenson, P.C., Maruthi, M.N., Gibson, G., Seal, S.E. & Muniyappa, V. (2006) Host-plant viral infection effects on arthropod-vector population growth, development and behaviour: management and epidemiological implications. Advances in Virus Research 67, 419452. doi:10.1016/S0065-3527(06)67011-5
Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9(8), 772772. doi:10.1038/nmeth.2109
De Barro, P. & Ahmed, M.Z. (2011) Genetic networking of the Bemisia tabaci cryptic species complex reveals pattern of biological invasions. PLoS ONE 6(10), e25579. doi:10.1371/journal.pone.0025579
EPPO (2005) Tomato chlorosis crinivirus . OEPP/EPPO Bulletin 35, 439441. doi:10.1111/j.1365-2338.2005.00888.x
Fiallo-Olivé, E., Hamed, A.A., Moriones, E. & Navas-Castillo, J. (2011) First report of tomato chlorosis virus infecting tomato in Sudan. Plant Disease 95(12), 1592. doi:10.1094/PDIS-08-11-0631
Fortes, I.M., Moriones, E. & Navas-Castillo, J. (2012) Tomato chlorosis virus in pepper: prevalence in commercial crops in southeastern Spain and symptomatology under experimental conditions. Plant Pathology 61(5), 9941001. doi:10.1111/j.1365-3059.2011.02584.x
Gao, R.R., Zhang, W.-P., Wu, H.-T., Zhang, R.-M., Zhou, H.-X., Pan, H.-P., Zhang, Y-J., Brown, J.K. & Chu, D. (2014) Population structure of the greenhouse whitefly, Trialeurodes vaporariorum (Westwood), an invasive species from the Americas, 60 years after invading China. International Journal of Molecular Sciences 15(8), 1338813400. doi:10.3390/ijms150813388
Grapputo, A., Boman, S., Lindström, L., Lyytinen, A. & Mappes, J. (2005) The voyage of an invasive species across continents: genetic diversity of North American and European Colorado potato beetle populations. Molecular Ecology 14(14), 42074219. doi:10.1111/j.1365-294X.2005.02740.x
Huelsenbeck, J.P., Andolfatto, P. & Huelsenbeck, E.T. (2011) Structurama: bayesian inference of population structure. Evolutionary Bioinformatics 2011(7), 5559. doi:10.4137/EBO.S6761
Kapantaidaki, D.E., Ovčarenko, I., Fytrou, N., Knott, K.E., Bourtzis, K. & Tsagkarakou, A. (2015) Low levels of mitochondrial DNA and symbiont diversity in the Worldwide agricultural pest, the greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Journal of Heredity 106(1), 8092 1–13 doi:10.1093/jhered/esu061
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Simon Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. & Drummond, A. (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12), 16471649. doi:10.1093/bioinformatics/bts199
Kinene, T., Wainaina, J., Maina, S. & Boykin, L.M. (2016) Rooting trees, methods for. Encyclopedia of Evolutionary Biology 3, 489493. doi:10.1016/B978-0-12-800049-6.00215-8
Lapidot, M., Legg, J.P., Wintermantel, W.M. & Polston, J.E. (2014) Management of whitefly-transmitted viruses in open-field production systems. Control of Plant Virus Diseases. Advances in Virus Research (1st ed., Vol. 90). Elsevier Inc., doi:10.1016/B978-0-12-801246-8.00003-2
Legg, J.P., Sseruwagi, P., Boniface, S., Okao-Okuja, G., Shirima, R., Bigirimana, S., Gashakae, G., Herrmannf, H-W., Jeremiahg, S., Obieroh, H., Ndyetabulai, I., Tata-Hangyj, W., Masembe, C. & Brown, J.K. (2014) Spatio-temporal patterns of genetic change amongst populations of cassava Bemisia tabaci whiteflies driving virus pandemics in East and Central Africa. Virus Research 186, 6175. doi:10.1016/j.virusres.2013.11.018
Miano, D.W., LaBonte, D.R. & Clark, C.A. (2008) Identification of molecular markers associated with sweet potato resistance to sweet potato virus disease in Kenya. Euphytica 160(1), 1524. doi:10.1007/s10681-007-9495-2
Mound, L.A. & Halsey, S.H. (1978) Whitefly of the World. A Systematic Catalogue of the Aleyrodidae (Homoptera) with Host Plant and Natural Enemy Data. British Museum (Natural History) & John Wiley & Sons, Chichester, Great Britain.
Navas-Castillo, J., Fiallo-Olivé, E. & Sánchez-Campos, S. (2011) Emerging virus diseases transmitted by whiteflies. Annual Review of Phytopathology 49, 219248. doi:10.1146/annurev-phyto-072910-095235
Navas-Castillo, J., Lopez, J.J. & Aranda, M.A. (2014) Whitefly-transmitted RNA viruses that affect intensive vegetable production. Annals of Applied Biology 165, 155171. doi:10.1111/aab.12147
Njaramb, N.T. (2000) Assessment of the level of resistance to bifenthrin cypermethrin and methomyl insecticides in Bemisia tabaci (Gennadius) and Trialeurodes vaporariorum (Westwood) whitefly populations from selected sites in Kenya. Msc. dissertation, Kenyatta University.
Ovčarenko, I., Kapantaidaki, D., Lindström, L., Gauthier, N., Tsagkarakou, A., Knott, K. & Vänninen, I. (2014) Agroecosystems shape population genetic structure of the greenhouse whitefly in Northern and Southern Europe. BMC Evolutionary Biology 14, 165. doi:10.1186/s12862-014-0165-4
Prijović, M., Marčić, D., Drobnjaković, T., Međo, I. & Perić, P. (2013) Life history traits and population growth of greenhouse whitefly on different tomato genotypes. Pesticid Phytomed 28(4), 239245. doi:10.2298/PIF1304239P
Prijović, M., Skaljac, M., Drobnjaković, T., Zanić, K., Perić, P., Marčić, D., & Puizina, J. (2014) Genetic variation of the greenhouse whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae), among populations from Serbia and neighbouring countries, as inferred from COI sequence variability. Bulletin of Entomological Research 1, 110. doi:10.1017/S0007485314000169
Rambaut, A., Suchard, M.A., Xie, D. & Drummond, A.J. (2014) Tracer v1.6. Available online at http://beast.bio.ed.ac.uk/Tracer
Roopa, H.K., Kumar, N.K.K., Asokan, R., Rebijith, K.B., Mahmood, R. & Verghese, A. (2012) Phylogenetic analysis of Trialeurodes Spp.(Hemiptera: Aleyrodidae) from India based on differences in mitochondrial and nuclear DNA. Florida Entomologist 95, 10861094. doi:10.1653/024.095.0438
Sseruwagi, P., Maruthi, M.N., Colvin, J., Rey, M.E.C., Brown, J.K. & Legg, J.P. (2006) Colonization of non-cassava plant species by cassava whiteflies (Bemisia tabaci) in Uganda. Entomologia Experimentalis et Applicata 119(Cmd), 145153. doi:10.1111/j.1570-7458.2006.00402.x
Swofford, D.L. (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28(10), 27312739. http://doi.org/10.1093/molbev/msr121
Ulrich, A. (2014) Export-oriented horticultural production in Laikipia, Kenya: assessing the implications for rural livelihoods. Sustainability 6, 336347. doi:10.3390/su6010336
Wilkinson, S., Haley, C., Alderson, L. & Wiener, P. (2011) An empirical assessment of individual-based population genetic statistical techniques: application to British pig breeds. Heredity 106(2), 261269. http://doi.org/10.1038/hdy.2010.80
Wintermantel, W.M., Hladky, L.L., Gulati-Sakhuja, A., Li, R., Liu, H.Y. & Tzanetakis, I.E. (2009) The complete nucleotide sequence and genome organization of tomato infectious chlorosis virus: a distinct crinivirus most closely related to lettuce infectious yellows virus. Archives of Virology 154(8), 13351341. doi:10.1007/s00705-009-0432-7
Wisler, G.C., Li, R.H., Liu, H.Y., Lowry, D.S. & Duffus, J.E. (1998) Tomato chlorosis virus: a new whitefly-transmitted, Phloem-limited, bipartite closterovirus of tomato. Phytopathology 88, 402409.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Wainaina supplementary material S1
Supplementary Figure

 Unknown (155 KB)
155 KB
UNKNOWN
Supplementary materials

Wainaina supplementary material S2
Supplementary Figure

 Unknown (149 KB)
149 KB
WORD
Supplementary materials

Wainaina supplementary material S3
Supplementary Table

 Word (197 KB)
197 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed