Skip to main content Accessibility help

Field-evolved resistance to λ-cyhalothrin in the lady beetle Eriopis connexa

  • P.M.G. Costa (a1), J.B. Torres (a1), V.M. Rondelli (a2) and R. Lira (a1)


Natural enemies are exposed to insecticide sprays for herbivorous species and may evolve field resistance to insecticides. Natural enemies selected for resistance in the field, however, are welcome for pest control. The susceptibility of 20 populations of Eriopis connexa from various crop ecosystems to λ-cyhalothrin was tested. Three bioassays were conducted: (i) topical treatment with lethal dose (LD)50 previously determined for populations considered standard for susceptibility (LD50S) and for resistance (LD50R) to λ-cyhalothrin at technical grade; (ii) dose–mortality assay to calculate the LD for populations exhibiting significant survival to the LD50R; and (iii) determination of survival when exposed to dried residues at field rates. Among the 20 tested populations, seven populations did not survive or survival rates were lower than 10% when treated with LD50R; three populations survived >20%, but lower than 50%; while ten populations exhibited equal or greater survival rates compared with the 50% expected survival for the LD50R. Thus, these ten populations were subjected to dose–mortality response, and the LD50 values varied from 0.046 to 5.44 µg a.i./insect with resistance ratio of 8.52- to 884.08-folds. Adults from these ten populations that were ranked as resistant according to the LD50R exhibited survival from 44.5 to 100% exposed to the lowest and from 38.8 to 100% exposed to the highest field rates of λ-cyhalothrin, respectively. Otherwise, the remaining ten populations ranked as susceptible according to the LD50R showed survival from 3.3 to 56% exposed to the lowest and from 0 to 17.7% exposed to the highest field rates of λ-cyhalothrin, respectively. Therefore, 50% of the tested E. connexa populations exhibited field-evolved resistance to λ-cyhalothrin and the use of a discriminatory LD50 for resistance matched the survival obtained when exposed to the insecticide field rates.


Corresponding author

*Author for correspondence Tel. +55 81 3320 6218 Fax: +55 81 3320 6205 E-mail:


Hide All
Abbas, N., Mansoor, M.M., Shad, S.A., Pathan, A.K., Waheed, A., Ejaz, M., Razaq, M. & Zulfiqar, M.A. (2014) Fitness cost and realized heritability of resistance to spinosad in Chrysoperla carnea (Neuroptera: Chrysopidae). Bulletin of Entomological Research 104, 707715.
Agrofit (2016) AGROFIT – Sistema de agrotóxicos fitossanitários.
Barbosa, P.R.R., Michaud, J.P., Rodrigues, A.R.S. & Torres, J.B. (2016) Dual resistance to lambda-cyhalothrin and dicrotophos in Hippodamia convergens (Coleoptera: Coccinellidae). Chemosphere 159, 19.
Barros, E.M. (2015) Suscetibilidade do Anthonomus Grandis Boh. (Coleoptera: Curculionidae) e sobrevivência de inimigos naturais de pragas do algodoeiro a inseticidas. Recife, PE, Universidade Federal Rural de Pernambuco.
Bass, C., Puinean, A.M., Zimmer, C.T., Denholm, I., Field, L.M., Foster, S.P., Gutbrod, O., Nauen, R., Slater, R. & Williamson, M.S. (2014) The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochemistry and Molecular Biology 51, 4151.
Boller, E.F., Vogt, H., Ternes, P. & Malavolta, C. (2005) Working document on selectivity of pesticides. www.IOBC.Ch/2005/Working%20Document% 20Pesticides_Explanations.pdf.
Croft, B.A. (1990) Arthropod Biological Control Agents and Pesticides. New York, NY, John Wiley & Sons.
Di Stefano, J. (2005) Effect size estimates and confidence intervals: an alternative focus for the presentation and interpretation of ecological data. Trends in Ecology & Evolution 1, 71102.
Evans, E.W. & Richards, D.R. (1997) Managing the dispersal of ladybird beetles (Col.: Coccinellidae): use of artificial honeydew to manipulate spatial distributions. Entomophaga 42, 93102.
Evans, E.W. & Toler, T.R. (2007) Aggregation of polyphagous predators in response to multiple prey: ladybirds (Coleoptera: Coccinellidae) foraging in alfalfa. Population Ecology 49, 2936.
Finney, D.J. (1971) Probit Analysis. 3rd edn. London, Cambridge University Press.
Genung, M.A., Crutsinger, G.M., Bailey, J.K., Schweitzer, J.A. & Sanders, N.J. (2012) Aphid and ladybird beetle abundance depend on the interaction of spatial effects and genotypic diversity. Oecologia 168, 167174.
Georghiou, G.P. (1972) The evolution of resistance to pesticides. Annual Review of Ecology, Evolution and Systematics 3, 133168.
Graves, J.B., Mohamad, R.B. & Clower, D.F. (1978) Beneficial insects also developing ‘resistance’. LA Agriculture 22, 1011.
Hassan, S.A. (1992) Guidelines for testing the effects of pesticides on beneficial organisms: description of test methods. IOBC/WPRS Bulletin 15, 186p.
Hassan, S.A., Bigler, F., Blaisinger, P., Bogenschütz, H., Brun, J., Chiverton, P., Dickler, E., Easterbrook, M.A., Edwards, P.J., Englert, W.D., Firth, S.I., Huang, P., Inglesfield, D., Klingauf, F., Kühner, C., Ledieu, M.S., Naton, E., Oomen, P.A., Overmeer, W.P.J., Plevoets, P., Reboulet, J.N., Rieckmann, W., Samsoe-Petersen, L., Shires, S.W., Stäubli, A., Stevenson, J., Tuset, J.J., Vanwetswinkel, G. & Van Zon, A.Q. (1985) Standard methods to test the side-effects of pesticides on natural enemies of insects and mites developed by the IOBC/WPRS working group ‘pesticides and beneficial organisms’. EPPO Bulletin 15, 214255.
Head, R., Neel, W.W., Sartor, C.R. & Chambers, H. (1977) Methyl parathion and carbaryl resistance in Chrysomela scripta and Coleomegilla maculata. Bulletin of Environmental Contamination and Toxicology 17, 163164.
Hoy, M.A. (1990) Pesticide resistance in arthropod natural enemies: variability and selection. pp. 203236 in Roush, R.T. & Tabashnik, B.E. (Eds) Pesticide Resistance in Arthropods. New York, Chapman & Hall.
Huseth, A.S., Petersen, J.D., Poveda, K., Szendrei, Z., Nault, B.A., Kennedy, G.G. & Groves, L.R. (2015) Spatial and temporal potato intensification drives insecticide resistance in the specialist herbivore, Leptinotarsa decemlineata. Public Library of Science ONE 10, e0127576.
Johnson, M.W. & Tabashnik, B.E. (1999) Enhanced biological control through pesticide selectivity. pp. 297317 in Bellows, T.S. & Fisher, T.W. (Eds) Handbook of Biological Control. San Diego, Academic Press.
Kumral, N.A., Gencer, N.S., Susurluk, H. & Yalcin, C. (2011) A comparative evaluation of the susceptibility to insecticides and detoxifying enzyme activities in Stethorus gilvifrons (Coleoptera: Coccinellidae) and Panonychus ulmi (Acarina: Tetranychidae). International Journal of Acarology 37, 255268.
Lira, R., Rodrigues, A.R.S. & Torres, J.B. (2016) Fitness advantage in heterozygous ladybird beetle Eriopis connexa (Germar) resistant to lambda-cyhalothrin. Neotropical Entomology 45, 573579.
Liu, E.M. & Huang, J. (2013) Risk preferences and pesticide use by cotton farmers in China. Journal of Development Economics 103, 202215.
Lovell, J.B., Wright, D.P., Gard, I.E., Miller, T.P., Treacy, M.F., Addor, R.W. & Kamhi, V.M. (1990) An insecticide/acaracide from a novel class of chemistry. Brighton Crop Protection Conference Pests and Diseases 3, 3742.
Martin, E.A., Reineking, B., Seo, B. & Steffan-Dewenter, I. (2013) Natural enemy interactions constrain pest control in complex agricultural landscapes. Proceedings of the National Academy of Sciences of the United States of America 110, 55345539.
Mills, N.J., Beers, E.H., Shearer, P.W., Unruh, T.R. & Amarasekare, K.G. (2015) Comparative analysis of pesticide effects on natural enemies in western orchards: a synthesis of laboratory bioassay data. Biological Control 102, 1725.
Onstad, D.W. & Carrière, Y. (2013) The role of landscapes in insect resistance management. pp. 327371 in Onstad, D.W. (ed) Insect Resistance Management: Biology, Economics, and Prediction. 2nd edn. London, Academic Press.
Pathan, A.K., Sayyed, A.H., Aslam, M., Razaq, M., Jilani, G. & Saleem, M.A. (2008) Evidence of field-evolved resistance to organophosphates and pyrethroids in Chrysoperla carnea (Neuroptera: Chrysopidae). Journal of Economic Entomology 101, 16761684.
Robertson, J.L. & Preisler, H.K. (1992) Pesticide Bioassays with Arthropods. Boca Raton, CRC Press, 127p.
Robertson, J.L., Russel, R.M., Preisler, H.K. & Savin, N.E. (2007) Bioassays with Arthropods. 2nd edn. Boca Raton, CRC Press, 199p.
Rodrigues, A.R.S., Torres, J.B., Siqueira, H.A.A. & Lacerda, D.P.A. (2013 a) Inheritance of lambda-cyhalothrin resistance in the predator lady beetle Eriopis connexa (Germar) (Coleoptera: Coccinellidae). Biological Control 64, 217224.
Rodrigues, A.R.S., Ruberson, J.R., Torres, J.B., Siqueira, H.A.A. & Scott, J.G. (2013 b) Pyrethroid resistance and its inheritance in a field population of Hippodamia convergens (Guérin-Méneville) (Coleoptera: Coccinellidae). Pesticide Biochemistry and Physiology 105, 135143.
Rodrigues, A.R.S., Spíndola, A.F., Torres, J.B., Siqueira, H.A.A. & Colares, F. (2013 c) Response of different populations of seven lady beetle species to lambda-cyhalothrin with record of resistance. Ecotoxicological and Environmental Safety 96, 5360.
Rodrigues, A.R.S., Siqueira, H.A.A. & Torres, J.B. (2014) Enzymes mediating resistance to lambda-cyhalothrin in Eriopis connexa (Coleoptera: Coccinellidae). Pesticide Biochemistry and Physiology 110, 3643.
Roubos, C.R., Rodriguez-Saona, C., Holdcraft, R., Mason, K.S. & Isaacs, R. (2014) Relative toxicity and residual activity of insecticides used in blueberry pest management: mortality of natural enemies. Journal of Economic Entomology 107, 277285.
Ruberson, J.R., Roberts, P. & Michaud, J.P. (2007) Pyrethroid resistance in Georgia populations of the predator Hippodamia convergens (Coleoptera: Coccinellidae). Proceedings of Beltwide Cotton Conference 1, 361365.
SAS Institute (2002) SAS/STAT 9.2, User's Guide. Cary, NC, USA, SAS Institute.
Sicsú, P.R., Macedo, R.H. & Sujii, E.R. (2015) Oviposition site selection structures niche partitioning among coccinellid species in a tropical ecosystem. Neotropical Entomology 44, 430438.
Silva, T.B.M., Siqueira, H.A.A., Oliveira, A.C., Torres, J.B., Oliveira, J.V., Montarroyos, P.A.V. & Farias, M.J.D.C. (2011) Insecticide resistance in Brazilian populations of the cotton leaf worm, Alabama argillacea. Crop Protection 30, 11561161.
Spíndola, A.F., Silva-Torres, C.S.A., Rodrigues, A.R.S. & Torres, J.B. (2013) Survival and behavioural responses of the predatory ladybird beetle, Eriopis connexa populations susceptible and resistant to a pyrethroid insecticide. Bulletin of Entomological Research 103, 485494.
Talebi, K., Kavousi, A. & Sabahi, Q. (2008) Impacts of pesticides on arthropod biological control agents. Pest Technology 2, 8797.
Theiling, K.M. & Croft, B.A. (1988) Pesticide side-effects on arthropod natural enemies: a database summary. Agriculture, Ecosystems & Environment 21, 191218.
Torres, J.B. (2012) Insecticide resistance in natural enemies - seeking for integration of chemical and biological controls. Journal of Biofertilzer and Biopesticide 3, e104.
Torres, J.B. & Ruberson, J.R. (2005) Canopy- and ground-dwelling predatory arthropods in commercial Bt and non-Bt cotton fields: patterns and mechanisms. Environmental Entomology 34, 12421256.
Torres, J.B., Rodrigues, A.R.S., Barros, E.M. & Santos, D.S. (2015) Lambda-cyhalothrin resistance in the lady beetle Eriopis connexa (Coleoptera: Coccinellidae) confers tolerance to other pyrethroids. Journal Economic Entomology 108, 6068.
Whalon, M.E., Mota-Sanchez, D., Hollingworth, R.M. & Duynslager, L. (2016) Arthropod pesticide resistance database., accessed 26 June 2016.
Wirtz, K., Bala, S., Amann, A. & Elbert, A. (2009) A promise extended future role of pyrethroids in agriculture. Bayer CropScience Journal 62, 145157.


Related content

Powered by UNSILO

Field-evolved resistance to λ-cyhalothrin in the lady beetle Eriopis connexa

  • P.M.G. Costa (a1), J.B. Torres (a1), V.M. Rondelli (a2) and R. Lira (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.