Skip to main content Accessibility help
×
Home

The effect of mealybug Pseudococcus longispinus (Targioni Tozzetti) infestation of different density on physiological responses of Phalaenopsis × hybridum ‘Innocence’

  • I. Kot (a1), K. Kmieć (a1), E. Górska-Drabik (a1), K. Golan (a1), K. Rubinowska (a2) and B. Łagowska (a1)...

Abstract

Cultivated orchids are the most abundantly attacked by polyphagous mealybugs. This study documented how different density of mealybug Pseudococcus longispinus (Targioni Tozzetti) infestation is associated with a response of antioxidative systems of Phalaenopsis × hybridum ‘Innocence’. The degree of cell damage, estimated by electrolyte leakage measurement and the level of thiobarbituric acid reactive substances (TBARS), the content of pigments as well as the activity of antioxidative enzymes and proline level, as measurements of stress and stress compensation in moth orchid were examined. The highest electrolyte leakage (E L) value among samples from colonized plants was found in the orchids from series III (50 individuals/plant), whereas the lowest in the plants from series II (20 individuals/plant). The TBARS content reached the highest level at the lowest number of feeding insects (series I). Peroxidase activity toward guaiacol was significantly increased in series I (5 individuals/plant). The highest catalase activity was recorded in plants colonized by the highest number of scale insects (series III). Whereas, the highest value of proline was in series II. The content of individual photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoids) in plant tissues did not vary significantly between control and colonized orchids. The results have not confirmed hypothesis that the increasing number of mealybugs occurring on plant enhanced plant physiological response. The degree of longtailed mealybug infestation on plants was positively correlated only with electrolyte leakage and catalase activity in leaf tissues.

Copyright

Corresponding author

* Author for correspondence Phone: +48815248102 Fax: +48815248103 E-mail: izabela.kot@up.lublin.pl

References

Hide All
Ali, M.B., Hahn, E-J. & Paek, K-Y. (2005) Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis. Plant Physiology and Biochemistry 43, 213223.
Apel, K. & Hirt, H. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55, 373399.
Bates, L.S., Waldren, R.R. & Teare, I.D. (1973) Rapid determination of free proline or water-stress studies. Plant Soil 39, 205207.
Calatayud, P.A. & Le Rü, B. (2006) Cassava–Mealybug Interactions. Paris, IRD Éditions, p. 110.
Calatayud, P.A., Rahbe, Y., Tjallingii, W.F., Tertuliano, M. & Le Rü, B. (1994) Electrically recorded feeding behaviour of cassava mealybug on host and non-host plants. Entomologia Experimentalis et Applicata 72, 219232.
Chance, B. & Meahly, S.K. (1955) Assays of catalase and peroxidase. Methods in Enzymology 2, 764775.
Ferry, N., Stavroulakis, S., Guan, W., Davison, G.M., Bell, H.A., Weaver, R.J., Down, R.E., Gatehouse, J.A. & Gatehouse, A.M.R. (2011) Molecular interactions between wheat and cereal aphid (Sitobion avenae): analysis of changes to the wheat proteome. Proteomics 11, 19852002.
Gaspar, T., Penel, C., Hagege, D. & Greppin, H. (1991) Peroxidases in plant growth, differentiation, and developmental processes. in Łobarzewski, J., Greppin, H., Penel, C. & Gaspar, T. (Eds) Biochemical, Molecular and Physiological Aspects of Plant Peroxidases. Lublin, University M Curie Sklodowska. 249280.
Gatehouse, J.A. (2002) Plant resistance towards insect herbivores: a dynamic interaction. New Phytologist 156, 145169. doi: 10.1046/j.1469-8137.2002.00519.x.
Gill, S.S. & Tuteja, N. (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48, 909930.
Golan, K. (2013) Interactions between host plants and Coccus hesperidum L. (Hemiptera; Sternorrhyncha; Coccidae). Dissertation 381, University of Life Sciences in Lublin, Lublin.
Golan, K., Rubinowska, K. & Górska-Drabik, E. (2013) Physiological and biochemical responses on fern Nephrolepis biserrata (Sw.)Schott. to Coccus hesperidum L. infestation. Acta Biologica Cracoviensia Series Botanica 55, 16.
Goławska, S., Krzyżanowski, R. & Łukasik, I. (2010) Relationship between aphid infestation and chlorlophyll content in Fabaceae species. Acta Biologica Cracoviensia series Botanica 52(2), 7680.
Gomathi, R. & Rakkiyapan, P. (2011) Comparative lipid peroxidation, leaf membrane thermostability, and antioxidant system in four sugarcane genotypes differing in salt tolerance. International Journal of Plant Physiology and Biochemistry 3(4), 6774.
Gomez, S.K., Oosterhuis, D.M., Rajguru, S.N. & Johnson, D.R. (2004) Foliar antioxidant enzyme responses in cotton after aphid herbivory. The Journal of Cotton Science 8, 99104.
Gulsen, O., Eickhoff, T., Heng-Moss, T., Shearman, R., Baxendale, F., Sarath, G. & Lee, D. (2010) Characterization of peroxidase changes in resistant and susceptible warm-season turfgrass challenged by Blissus occiduus . Arthropod–Plant Interactions 4, 4555.
He, J., Chen, F., Chen, S., Lv, G., Deng, Y., Fang, W., Liu, Z., Guan, Z. & He, C. (2011) Chrysanthemum leaf epidermal surface morphology and antioxidant and defense enzyme activity in response to aphid infestation. Journal of Plant Physiology 168, 687693.
Heath, R.L. & Packer, L. (1968) Effect of light on lipid peroxidation in chloroplasts. Biochemical and Biophysical Research Communications 19, 716720.
Hoque, M.A.O.E., Banu, M.N.A., Nakamura, Y., Shimoishi, Y. & Murata, Y. (2007) Exogenous proline mitigates the detrimental effects of salt stress more than the betaine by increasing antioxidant enzyme activity. Journal of Plant Physiology 164, 553561.
Huang, J., Zhang, P.J., Zhang, J., Lu, Y.B., Huang, F. & Li, M.J. (2013) Chlorophyll content and chlorophyll fluorescence in tomato leaves infested with an invasive mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcidae). Plant–Insect Interactions 42, 973979.
Hung, S.H., Yu, C.W. & Lin, C.H. (2005) Hydrogen peroxide functions as a stress signal in plants. Botanical Bulletin of the Academia Sinica 46, 110.
Johnson, P.J. (2009) Mealybugs on orchids. American Orchid Society, Available online at https://www.aos.org/Default.aspx?id=511
Kaur, R., Gupta, A.K. & Taggar, G.K. (2014) Role of catalase, H2O2 and phenolics in resistance of pigeonpea towards Helicoverpa armigera (Hubner). Acta Physiologiae Plantarum 36, 15131527.
Kehr, J. (2006) Phloem sap proteins: their identities and potential roles in the interaction between plants and phloem-feeding insects. Focus paper. Journal of Experimental Botany 57(4), 767774.
Khattab, H. (2007) The defence mechanism of cabbage plant against phloem-sucking aphid (Brevicoryne brassicae L.). Australian Journal of Basic and Applied Sciences 1, 5662.
Kmieć, K., Kot, I., Rubinowska, K., Łagowska, B., Golan, K. & Górska-Drabik, E. (2014) Physiological reaction of Phalaenopsis x hybridum ‘Innocence’ on Pseudococcus longispinus (Targoni Tozetti) feeding. Acta Scientarum Polonorum, Hortorum Cultus 13(3), 8596.
Kocsy, Y., Laurie, R., Szalai, G., Szilágyi, V., Simon-Sarkadi, L., Galiba, G. & de Ronde, J.A. (2005) Genetic manipulation of proline levels affects antioxidant in soybean subjected to simultaneous drought and heat stresses. Physiologia Plantarum 124, 227235.
Kościelniak, J. (1993) Wpływ następczy temperatur w termoperiodyzmie dobowym na produktywność fotosyntetyczną kukurydzy (Zea mays L.)/Successive effect of temperature daily thermoperiodism in the photosynthetic productivity of maize (Zea mays L.). PhD Thesis 174, University of Agriculture, Kraków.
Lichtenthaler, H.K. & Wellburn, A.R. (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions 11, 591592.
Łukasik, I., Goławska, S., Wójcicka, A. & Pogonowska, M. (2008) Activity of cereal aphid enzymes towards scavenging hydrogen peroxide. Aphids and Other Hemipterous Insects 14, 165173.
Łukasik, I., Goławska, S. & Wójcicka, A. (2012) Effect of cereal aphid infestation on ascorbate content and ascorbate peroxidase activity in triticale. Polish Journal of Environmental Studies 21(6), 19371941.
Maffei, M.E., Mithofer, A. & Boland, W. (2007) Insect feeding on plants: rapid signals and responses preceding the induction of phytochemical release. Phytochemistry 68, 29462959.
Mai, V.C., Bednarski, W., Borowiak-Sobkowiak, B., Wilkaniec, B., Samardakiewicz, S. & Morkunas, I. (2013) Oxidative stress in pea seedling leaves in response to Acyrthosiphon pisum infestation. Phytochemistry 93, 4962.
Małolepsza, A., Urbanek, H. & Polit, J. (1994) Some biochemical of strawberry plants to infection with Botrytis cinerea and salicylic acid treatment. Acta Agrobotanica 47, 7381.
Mika, A., Boenisch, M.J., Hopff, D. & Lüthje, S. (2010) Membrane-bound guaiacol peroxidases from maize (Zea mays L.) roots are regulated by methyl jasmonate, salicylic acid, and pathogen elicitors. Journal of Experimental Botany 61(3), 831841.
Miles, P.W. (1999) Aphid saliva. Biological Reviews of the Cambridge Philosophical Society 74, 4185.
Mittler, R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7, 405410.
Mohase, L. & van der Westhuizen, A.J. (2002) Salicylic acid is involved in resistant response in the Russia wheat aphid–wheat interaction. Journal of Plant Physiology 159, 585590.
Molinari, H.B.C., Marur, C.J., Daros, E., de Campos, M.K.F. & de Carvalho, J.F.R.P. (2007) Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiologia Plantarum 130, 218229.
Moloi, M.J. & van der Westhuizen, A.J. (2006) The reactive oxygen species are involved in resistance response of wheat to the Russian wheat aphid. Journal of Plant Physiology 163, 11181125.
Ni, X., Quisenberry, S.S., Heng-Moss, T., Markwell, J., Higley, L., Baxendale, F., Sarath, G. & Klucas, R. (2002) Dynamic change in photosynthetic pigments and chlorophyll degradation elicited by cereal aphid feeding. Entomologia Experimentalis et Applicata 105, 4353.
Ozawa, R., Bertea, C.M., Foti, M., Narayana, R., Arimura, G.I., Muroi, A., Horiuchi, J.I., Nishioka, J.I., Maffei, M.E. & Takabayashi, J. (2009) Exogenous polyamines elicit herbivore-induced volatiles in Lima bean leaves: involvement of calcium, H2O2 and jasmonic acid. Plant and Cell Physiology 50, 21832199.
Ozden, M., Demirel, U. & Kahraman, A. (2009) Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2 . Scientia Horticulturae – Amsterdam 119, 163168.
Porta, H. & Rocha-Sosa, M. (2002) Plant lipoxygenases. Physiological and molecular features. Plant Physiology 130, 1521.
Rejeb, K.B., Abdelly, C. & Savouré, A. (2014) How reactive oxygen species and proline face stress together. Plant Physiology and Biochemistry 80, 278284.
Retuerto, R., Lema, B.F., Roiloa, S.R. & Obeso, J.R. (2004) Increased photosynthetic performance in holly trees infested by scale insects. Functional Ecology 18, 664669.
Samsone, I., Andersone, U. & Ievinsh, G. (2012) Variable effect of arthropod-induced galls on photochemistry of photosynthesis, oxidative enzyme activity and ethylene production in tree leaf tissues. Environmental and Experimental Biology 10, 1526.
Sempruch, C., Golan, K., Górska-Drabik, E., Kmieć, K., Kot, I. & Łagowska, B. (2014) The effect of a mealybug infestation on the activity of amino acid decarboxylases in orchid leaves. Journal of Plant Interactions 9(1), 825831.
Suzuki, N. & Mittler, R. (2012) Reactive oxygen species-dependent wound responses in animals and plants. Free Radical Biology and Medicine 53, 22692276.
Sytykiewicz, H., Goławska, S. & Chrzanowski, G. (2011) Effect of the bird cherry-oat aphid Rhopalosiphum padi L. feeding on phytochemical responses within the bird cherry Prunus padus L. Polish Journal of Ecology 59(2), 329338.
Szabados, L. & Savouré, A. (2009) Proline: a multifunctional amino acid. Review. Trends in Plant Science 15(2), 8997.
Taggar, G.H., Gill, R.S., Gupta, A.K. & Sandhu, J.S. (2012) Fluctuations in peroxidase and catalase activities of resistant and susceptible blackgram (Vigna mungo (L.) Hepper) genotypes elicited by Bemisia tabaci (Gennadius) feeding. Plant Signaling & Behavior 7, 13211329.
Vranjic, J.A. (1997) Effects on host plant. Chapter ecology. in Ben-Dov, Y. & Hodgson, C.J. (Eds) Soft Scale Insects – Their Biology, Natural Enemies and Control. Elsevier Science B.V. 323336.
Walling, L. (2008) Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiology 146, 859866.
War, A.R., Pauljar, M.G., War, M.Y. & Ignacimuthu, S. (2012) Herbivore induced resistance in different groundnut germplasm lines to Asian armyworm, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). Acta Physiologiae Plantarum 34, 343352.
Wei, H., Zhikuan, J. & Qingfang, H. (2007) Effects of herbivore stress by Aphis medicaginis Koch on the malondialdehyde contents and the activities of protective enzymes in different alfalfa varieties. Acta Ecologica Sinica 27(6), 21772183.
Will, T. & van Bel, A.J.E. (2008) Induction as well as suppression. Plant Signaling & Behavior 3(6), 427430.
Will, T., Tjallingii, W.F., Thönnessen, A. & van Bel, A.J.E. (2007) Molecular sabotage of plant defense by aphid saliva. Proceeding of the National Academy of Science of the United States of America 104(25), 1053610541.
Will, T., Steckbauer, K., Hardt, M. & van Bel, A.J.E. (2012) Aphid Gel Saliva: sheath structure, protein composition and secretory dependence on Stylet-Tip Milieu. Public Library of Science 7(10), e46903.
Wiloch, U., Mioduszewska, H. & Banaś, A. (1999) The influence of alloxydim on the antioxidant enzymatic activity in the roots maize (Zea mays L.). Acta Physiologiae Plantarum 21, 535541.

Keywords

The effect of mealybug Pseudococcus longispinus (Targioni Tozzetti) infestation of different density on physiological responses of Phalaenopsis × hybridum ‘Innocence’

  • I. Kot (a1), K. Kmieć (a1), E. Górska-Drabik (a1), K. Golan (a1), K. Rubinowska (a2) and B. Łagowska (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed