Skip to main content Accessibility help
×
×
Home

Differential necrophoric behaviour of the ant Solenopsis invicta towards fungal-infected corpses of workers and pupae

  • H.-L. Qiu (a1), L.-H. Lu (a2), Q.-X. Shi (a1), C.-C. Tu (a1), T. Lin (a1) and Y.-R. He (a1)...

Abstract

Necrophoric behaviour is critical sanitation behaviour in social insects. However, little is known about the necrophoric responses of workers towards different developmental stages in a colony as well as its underlying mechanism. Here, we show that Solenopsis invicta workers display distinct necrophoric responses to corpses of workers and pupae. Corpses of workers killed by freezing (dead for <1 h) were carried to a refuse pile, but pupal corpses would take at least 1 day to elicit workers’ necrophoric response. Metarhizium anisopliae-infected pupal corpses accelerated the necrophoric behaviour of resident workers, with 47.5% of unaffected corpses and 73.8% infected corpses discarded by 1 day post-treatment). We found that fungus-infected pupal corpses had a higher concentration of fatty acids (palmitic acid, oleic acid and linoleic acid) on their surface. We experimentally confirmed that linoleic and oleic acids would elicit a necrophoric response in workers. The appearance of linoleic and oleic acids appeared to be chemical signals involved in recognition of pupal corpses, and M. anisopliae infection could promote the accumulation of fatty acids on surface of pupal corpses resulting in accelerated necrophoric responses of workers.

Copyright

Corresponding author

* Author for correspondence Phone: +86-020-85283985 E-mail: yrhe@scau.edu.cn

References

Hide All
Akino, T. & Yamaoka, R. (1996) Origin of oleic acid, corpse recognition signal in the ant, Formica japonica Motschlsky (Hymenoptera: Formicidae). Japanese Journal of Applied Entomology and Zoology 40, 265271.
Asensio, L., Lopez-Llorca, L.V. & Lopez-Jimenez, J.A. (2005) Use of light, scanning electron microscopy and bioassays to evaluate parasitism by entomopathogenic fungi of the red scale insect of palms (Phoenicococcus marlatti Ckll., 1899). Micron 36, 169175.
Baracchi, D., Fadda, A. & Turillazzi, S. (2012) Evidence for antiseptic behaviour towards sick adult bees in honey bee colonies. Journal of Insect Physiology 58, 15891596.
Bos, N., Lefèvre, T., Jensen, A. & D'ettorre, P. (2012) Sick ants become unsociable. Journal of Evolutionary Biology 25, 342351.
Brütsch, T. & Chapuisat, M. (2014) Wood ants protect their brood with tree resin. Animal Behaviour 93, 157161.
Castella, G., Chapuisat, M. & Christe, P. (2008) Prophylaxis with resin in wood ants. Animal Behaviour 75, 15911596.
Chapuisat, M., Oppliger, A., Magliano, P. & Christe, P. (2007) Wood ants use resin to protect themselves against pathogens. Proceedings of the Royal Society B: Biological Sciences 274, 20132017.
Choe, D.H., Millar, J.G. & Rust, M.K. (2009) Chemical signals associated with life inhibit necrophoresis in Argentine ants. Proceedings of National Academic Science of the United States of America 106, 82518255.
Dall'Aglio-Holvorcem, C.G., Benson, W.W., Gilbert, L.E., Trager, J.C. & Trigo, J.R. (2009) Chemical tools to distinguish the fire ant species Solenopsis invicta and S. saevissima (Formicidae: Myrmicinae) in Southeast Brazil. Biochemical Systematics and Ecology 37, 442451.
Diez, L., Deneubourg, J.L., Hoebeke, L. & Detrain, C. (2011) Orientation in corpse-carrying ants: memory or chemical cues? Animal Behaviour 81, 11711176.
Diez, L., Deneubourg, J.L. & Detrain, C. (2012) Social prophylaxis through distant corpse removal in ants. Naturwissenschaften 99, 833842.
Diez, L., Moquet, L. & Detrain, C. (2013) Post-mortem changes in chemical profile and their influence on corpse removal in ants. Journal of Chemical Ecology 39, 14241432.
Diez, L., Lejeune, P. & Detrain, C. (2014) Keep the nest clean: survival advantages of corpse removal in ants. Biology Letters 10, 20140306.
Eliyahu, D., Ross, K.G., Haight, K.L., Keller, L. & Liebig, J. (2011) Venom alkaloid and cuticular hydrocarbon profiles are associated with social organization, queen fertility status, and queen genotype in the fire ant Solenopsis invicta . Journal of Chemical Ecology 37, 12421254.
Fan, Y., Pereira, R.M., Kilic, E., Casella, G. & Keyhani, N.O. (2012) Pyrokinin beta-neuropeptide affects necrophoretic behavior in fire ants (S. invicta), and expression of beta-NP in a mycoinsecticide increases its virulence. PLoS ONE 7, e26924.
Gilby, A. (1965) Lipids and their metabolism in insects. Annual Review of Entomology 10, 141160.
Gordon, D.M. (1983) Dependence of necrophoric response to oleic acid on social context in the ant, Pogonomyrmex badius . Journal of Chemical Ecology 9, 105111.
Haskins, C.P. & Haskins, E.F. (1974) Notes on necrophoric behavior in the archaic ant Myrmecia vindex (Formicidae: Myrmeciinae). Psyche 81, 258267.
Heinze, J. & Walter, B. (2010) Moribund ants leave their nests to die in social isolation. Current Biology 20, 249252.
Hölldobler, B. and Wilson, E.O. (1990) The Ants. Cambridge, MA, Harvard University Press.
Howard, D.F. & Tschinkel, W.R. (1976) Aspects of necrophoric behavior in the red imported fire ant, Solenopsis invicta . Behaviour 56, 157180.
Hughes, W.O., Eilenberg, J. & Boomsma, J.J. (2002) Trade-offs in group living: transmission and disease resistance in leaf-cutting ants. Proceedings of the Royal Society of London B: Biological Sciences 269, 18111819.
Lach, L., Parr, C.L. & Abott, K.L. (2010) Ant Ecology. Oxford University Press.
Maák, I., Markó, B., Erős, K., Babik, H., Ślipiński, P. & Czechowski, W. (2014) Cues or meaningless objects? Differential responses of the ant Formica cinerea to corpses of competitors and enslavers. Animal Behaviour 91, 5359.
Renucci, M., Tirard, A. & Provost, E. (2010) Complex undertaking behavior in Temnothorax lichtensteini ant colonies: from corpse-burying behavior to necrophoric behavior. Insectes Sociaux 58, 916.
Richard, F.J. & Hunt, J.H. (2013) Intracolony chemical communication in social insects. Insectes Sociaux 60, 275291.
Rollo, C., Czvzewska, E. & Borden, J. (1994) Fatty acid necromones for cockroaches. Naturwissenschaften 81, 409410.
Schrank, A. & Vainstein, M.H. (2010) Metarhizium anisopliae enzymes and toxins. Toxicon 56, 12671274.
Simone-Finstrom, M. & Spivak, M. (2010) Propolis and bee health: the natural history and significance of resin use by honey bees. Apidologie 41, 295311.
Simone, M., Evans, J.D. & Spivak, M. (2009) Resin collection and social immunity in honey bees. Evolution 63, 30163022.
Sturgis, S.J. & Gordon, D.M. (2012) Nestmate recognition in ants (Hymenoptera: Formicidae): a review. Myrmecological News 16, 101110.
Sun, Q. & Zhou, X. (2013) Corpse management in social insects. International Journal of Biological Science 9, 313321.
Tschinkel, W.R. (2006) The Fire Ants. Cambridge, MA, Harvard University Press.
Ugelvig, L.V. & Cremer, S. (2007) Social prophylaxis: group interaction promotes collective immunity in ant colonies. Current Biology 17, 19671971.
Ulyshen, M.D. & Shelton, T.G. (2012) Evidence of cue synergism in termite corpse response behavior. Naturwissenschaften 99, 8993.
Walsh, J.P. & Tschinkel, W.R. (1974) Brood recognition by contact pheromone in the red imported fire ant, Solenopsis invicta . Animal Behaviour 22, 695704.
Yanagawa, A. & Shimizu, S. (2007) Resistance of the termite, Coptotermes formosanus Shiraki to Metarhizium anisopliae due to grooming. BioControl 52, 7585.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of Entomological Research
  • ISSN: 0007-4853
  • EISSN: 1475-2670
  • URL: /core/journals/bulletin-of-entomological-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Qiu supplementary material
Figure S1-S2

 Word (4.3 MB)
4.3 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed