Skip to main content Accessibility help

Coinfection by Trypanosoma cruzi and a fungal pathogen increases survival of Chagasic bugs: advice against a fungal control strategy

  • A. Laura Flores-Villegas (a1), Margarita Cabrera-Bravo (a1), José A. De Fuentes-Vicente (a2), J. Guillermo Jiménez-Cortés (a3), Paz María Salazar-Schettino (a1), Martha Irene Bucio-Torres (a1) and Alex Córdoba-Aguilar (a3)...


Triatomine bugs carry the parasitic protozoa Trypanosoma cruzi, the causal agent of Chagas disease. It is known that both the parasite and entomopathogenic fungi can decrease bug survival, but the combined effect of both pathogens is not known, which is relevant for biological control purposes. Herein, the survival of the triatomine Meccus pallidipennis (Stal, 1872) was compared when it was coinfected with the fungus Metarhizium anisopliae (Metschnikoff) and T. cruzi, and when both pathogens acted separately. The immune response of the insect was also studied, using phenoloxidase activity in the bug gut and hemolymph, to understand our survival results. Contrary to expectations, triatomine survival was higher in multiple than in single challenges, even though the immune response was lower in cases of multiple infection. We postulate that T. cruzi exerts a protective effect and/or that the insect reduced the resources allocated to defend itself against both pathogens. Based on the present results, the use of M. anisopliae as a control agent should be re-considered.


Corresponding author

Author for correspondence: Margarita Cabrera-Bravo, E-mail:; Alex Córdoba-Aguilar, E-mail:


Hide All
Alizon, S, de Roode, JC and Michalakis, Y (2013) Multiple infections and the evolution of virulence. Ecology Letters 16, 556567.
Azambuja, P, Feder, D, Mello, CB, Gomes, SAO and Garcia, ES (1999) Immunity in Rhodnius prolixus: Trypanosomatid–vector interactions. Memorias do Instituto Oswaldo Cruz 94, 219222.
Bautista, NL, Rojas, G, De Haro, I, Bucio, M and Salazar-Schettino, PM (2001) Comportamiento biológico de Triatoma pallidipennis (Hemiptera: Reduvidae) en el estado de Morelos, México. Boletín Chileno de Parasitología 57, 2227.
Benelli, G (2018) Managing mosquitoes and ticks in a rapidly changing world – facts and trends. Saudi Journal of Biological Sciences 26, 921929.
Bordes, F and Morand, S (2011) The impact of multiple infections on wild animal hosts: a review. Infection, Ecology and Epidemiology 1, 7346.
Botto-Mahan, C, Cattan, PE and Medel, R (2006) Chagas disease parasite induces behavioural changes in the kissing bug Mepraia spinolai. Acta Tropica 98, 219223.
Brunner-Mendoza, C, Reyes-Montes, MR, Moonjely, S, Bidochka, MJ and Toriello, C (2019) A review on the genus Metarhizium as an entomopathogenic microbial biocontrol agent with emphasis on its use and utility in Mexico. Biocontrol Science and Technology 29, 83102.
Choisy, M and de Roode, JC (2010) Mixed infections and the evolution of virulence: effects of resource competition, parasite plasticity, and impaired host immunity. American Naturalist 175, E105E118.
Cordero-Montoya, G, Flores-Villegas, AL, Salazar-Schettino, PM, Vences-Blanco, MO, Rocha-Ortega, M, Gutiérrez-Cabrera, AE, Rojas-Ortega, E and Córdoba-Aguilar, A (2019) The cost of being a killer´s accomplice: Trypanosoma cruzi impairs the fitness of kissing bug. Parasitology Research 118, 25232529.
Daquinag, AC, Nakamura, S, Takao, T, Shimonishi, Y and Tsukamoto, T (1995) Primary structure of a potent endogenous DOPA-containing inhibitor of phenol oxidase from Musca domestica. Proceedings of the National Academy of Sciences of the United States of America 92, 29642968.
De Fuentes-Vicente, JA, Cabrera-Bravo, M, Enríquez-Vara, JN, Bucio-Torres, M, Gutiérrez-Cabrera, AE, Vidal-López, DG, Martínez-Ibarra, JA, Salazar-Schettino, PM and Córdoba-Aguilar, A (2016) Relationships between altitude, triatomine (Triatoma dimidiata) immune response and virulence of Trypanosoma cruzi, the causal agent of Chagas’ disease. Medical Veterinary and Entomology 31, 6371.
De Fuentes-Vicente, JA, Gutiérrez-Cabrera, AE, Flores-Villegas, AL, Lowenberger, C, Benelli, G, Salazar-Schettino, PM and Cordoba-Aguilar, A (2018) What makes an effective Chagas disease vector? Factors underlying Trypanosoma cruzi-triatomine interactions. Acta Tropica 183, 2331.
De Oliveira, ABB, Alevi, KCC, Imperador, CHL, Madeira, FF and de Azeredo-Oliveira, MTV (2018) Parasite–vector interaction of Chagas disease: a mini review. American Journal of Tropical Medicine and Hygiene 98, 653655.
Elliot, SL, Rodrigues, JDO, Lorenzo, MG, Martins-Filho, OA and Guarneri, AA (2015) Trypanosoma cruzi, etiological agent of Chagas disease, is virulent to its triatomine vector Rhodnius prolixus in a temperature-dependent manner. PLoS Neglected Tropical Diseases 9, e0003646.
Favila-Ruiz, G, Jiménez-Cortés, JG, Córdoba-Aguilar, A, Salazar-Schettino, PM, Gutiérrez-Cabrera, AE, Pérez-Torres, A, De Fuentes-Vicente, JA, Vences-Blanco, MO, Bucio-Torres, MI, Flores-Villegas, AL and Cabrera-Bravo, M (2018) Effects of Trypanosoma cruzi on the phenoloxidase and prophenoloxidase activity in the vector Meccus pallidipennis (Hemiptera:Reduviidae). Parasites & Vectors 11, 434.
Fellet, MR, Lorenzo, MG, Elliot, SL, Carrasco, D and Guarneri, AA (2014) Effects of infection by Trypanosoma cruzi and Trypanosoma rangeli on the reproductive performance of the vector Rhodnius prolixus. PLoS ONE 9, e105255.
Flores-Villegas, AL, Salazar-Schettino, PM, Córdoba-Aguilar, A, Gutiérrez-Cabrera, AE, Rojas-Wastavino, GE, Bucio-Torres, MI and Cabrera-Bravo, M (2015) Immune defence mechanisms of triatomines against bacteria, viruses, fungi and parasites. Bulletin of Entomological Research 5, 523532.
Flores-Villegas, AL, Cabrera-Bravo, M, Toriello, C, Bucio-Torres, MI, Salazar-Schettino, PM and Córdoba-Aguilar, A (2016) Survival and immune response of the Chagas vector Meccus pallidipennis (Hemiptera: Reduviidae) against two entomopathogenic fungi, Metarhizium anisopliae and Isaria fumosorosea. Parasites & Vectors 9, 176.
Flores-Villegas, AL, Cabrera-Bravo, M, Pérez-Torres, A, Córdoba-Aguilar, A, Salazar-Schettino, PM, Hernández-Velázquez, VM and Toriello, C (2018) Effects on Meccus pallidipennis (Hemiptera: Reduviidae) eggs exposed to entomopathogenic fungi: exploring alternatives to control Chagas disease. Journal of Medical Entomology 56, 284290.
Garcia, AR, de Paula Rocha, A, Moreira, CC, Rocha, SL, Guarneri, AA and Elliot, SL (2016) Screening of fungi for biological control of a triatomine vector of Chagas disease: temperature and trypanosome infection as factors. PLoS Neglected Tropical Diseases 10, e0005128.
González-Santoyo, I and Córdoba-Aguilar, A (2012) Phenoloxidase: a key component of the insect immune system. Entomologia Experimentalis et Applicata 142, 116.
Herbison, R, Lagrue, C and Poulin, R (2018) The missing link in parasite manipulation of host behaviour. Parasites & Vectors 11, 222.
Hinestroza, G, Ortiz, MI and Molina, J (2016) Behavioral fever response in Rhodnius prolixus (Reduviidae: Triatominae) to intracoelomic inoculation of Trypanosoma cruzi. Revista da Sociedade Brasileira de Medicina Tropical 49, 425432.
Hurd, H (2003) Manipulation of medically important insect vectors by their parasites. Annual Review of Entomology 48, 141161.
Kamiya, T, Mideo, N and Alizon, S (2018) Coevolution of virulence and immunosuppression in multiple infections. Journal of Evolutionary Biology 31, 9951005.
López-Villavicencio, M, Courjol, F, Gibson, AK, Hood, ME, Jonot, O, Shykoff, JA and Giraud, T (2011) Competition, cooperation among kin, and virulence in multiple infections. Evolution 65, 13571366.
Lorono-Pino, MA, Cropp, CB, Farfan, JA, Vorndam, AV, Rodríguez-Angulo, EM, Rosado-Paredes, EP, Flores-Flores, LF, Beaty, BJ and Gubler, DJ (1999) Common occurrence of concurrent infections by multiple dengue virus serotypes. The American Journal of Tropical Medicine and Hygiene 61, 725730.
Mahmud, R, Lim, YAL and Amir, A (2018) Medical Parasitology: A Textbook. Gewerbestrasse, Switzerland: Springer.
Martínez-Ibarra, JA and Katthain-Duchateau, G (1999) Biology of Triatoma pallidipennis Stal 1945 (Hemiptera: Reduviidae: Triatominae) under laboratory conditions. Memórias do Instituto Oswaldo Cruz 94, 837839.
Martínez-Ibarra, JA, García-Benavidez, G, Vargas-Llamas, V, Bustos-Saldaña, R and Montañez-Valdes, OD (2012) Bionomics of populations on Meccus pallidipennis (Stal), 1872 (Hemiptera: Reduviidae from Mexico. Journal of Vector Ecology 37, 474477.
Marliére, NP, Latorre-Estivalis, JM, Lorenzo, MG, Carrasco, D, Alves-Silva, J, de Rodrigues, JO, de Ferreira, LL, de Lara, LM, Lowenberger, C and Guarneri, AA (2015) Trypanosomes modify the behavior of their insect hosts: effects on locomotion and on the expression of a related gene. PLoS Neglected Tropical Diseases 9, e0003973.
McClure, CD, Zhong, W, Hunt, VL, Chapman, FM, Hill, FV and Priest, NK (2014) Hormesis results in trade-offs with immunity. Evolution 68, 22252233.
Peterson, JK, Graham, AL, Elliott, RJ, Dobson, AP and Chávez, OT (2016) Trypanosoma cruziTrypanosoma rangeli co-infection ameliorates negative effects of single trypanosome infections in experimentally infected Rhodnius prolixus. Parasitology 143, 11571167.
Poinar, GO (2018) Nematodes for Biological Control of Insects. Miami, Florida: CRC Press.
Pollitt, LC, Bram, JT, Blanford, S, Jones, MJ and Read, AF (2015) Existing infection facilitates establishment and density of malaria parasites in their mosquito vector. PLoS Pathogens 11, e1005003.
Read, FA (1994) The evolution of virulence. Trends in Microbiology 2, 7376.
Rechcigl, JE and Rechcigl, NA (2016) Insect Pest Management: Techniques for Environmental Protection. London: CRC Press.
Ribeiro, JCM, Genta, FA, Sorgine, MHF, Logullo, R, Mesquita, RD, Paiva-Silva, GO, Majerowicz, D, Medeiros, M, Koerich, L, Terra, WR, Ferreira, C, Pimentel, AC, Bisch, PM, Leite, DC, Diniz, MMP, Lídio da, SGV, Junior, J, Da Silva, ML, Araujo, RN, Caroline, A, Gandara, P, Brosson, S, Salmon, D, Bousbata, S, González-Caballero, N, Silber, AM, Alves-Bezerra, M, Gondim, KC, Silva-Neto, MAC, Atella, GC, Araujo, H, Dias, FA, Polycarpo, C, Vionette-Amaral, RJ, Fampa, P, Melo, ACA, Tanaka, AS, Balczun, C, Oliveira, JHM, Gonçalves, RLS, Lazoski, C, Rivera-Pomar, R, Diambra, L, Schaub, GA, Garcia, ES, Azambuja, P, Braz, GRC and Oliveira, PL (2014) An insight into the transcriptome of the digestive tract of the bloodsucking bug, Rhodnius prolixus. PloS Neglected Tropical Diseases 8, e2594.
Rückert, C, Weger-Lucarelli, J, Garcia-Luna, SM, Young, MC, Byas, AD, Murrieta, RA, Fauver, JR and Ebel, GD (2017) Impact of simultaneous exposure to arboviruses on infection and transmission by Aedes aegypti mosquitoes. Nature Communications 8, 15412.
Schmid-Hempel, P (2011) Evolutionary Parasitology: The Integrated Study of Infections, Immunology, Ecology, and Genetics. New York, NY: Oxford University Press.
Toriello, C (2003) Bioseguridad de Metharhizium anisopliae (Metschnikoff) Sorokin (Hyphomycete). Vedalia 10, 107113.
Toriello, C, Pérez-Torres, A, Burciaga-Díaz, A, Navarro-Barranco, H, Pérez-Mejía, A, Lorenzana-Jiménez, M and Mier, T (2006) Lack of acute pathogenicity and toxicity in mice of an isolate of Metarhizium anisopliae var. anisopliae from spittlebugs. Ecotoxicology and Environmental Safety 65, 278287.
Toriello, C, Montoya-Sansón, E, Zavala-Ramírez, M, Navarro-Barranco, H, Basilio-Hernández, D, Hernández-Velázquez, V and Mier, T (2008) Virulencia y termotolerancia de cultivos monospóricos de Metarhizium anisopliae var. Anisopliae de la mosca pinta (Hemiptera: Cercopidae). Revista Mexicana de Micología 28, 5766.
Vieira, CS, Waniek, PJ, Mattos, DP, Castro, DP, Mello, CB, Ratcliffe, NA, Garcia, ES and Azambuja, P (2014) Humoral responses in Rhodnius prolixus: bacterial feeding induces differential patterns of antibacterial activity and enhances mRNA levels of antimicrobial peptides in the midgut. Parasites and Vectors 7, 113.
Whitten, MMA, Mello, CB, Gomes, SAO, Nigam, Y, Azambuja, P, Garcia, ES and Ratcliffe, NA (2001) Role of superoxide and reactive nitrogen intermediates in Rhodnius prolixus (Reduviidae)/Trypanosoma rangeli interactions. Experimental Parasitology 98, 4457.
Whitten, M, Sun, F, Tew, I, Schaub, G, Soukou, C, Nappi, A and Ratcliffe, N (2007) Differential modulation of Rhodnius prolixus nitric oxide activities following challenge with Trypanosoma rangeli, T. cruzi and bacterial cell wall components. Insect Biochemistry and Molecular Biology 37, 440452.
WHO Expert Committee on the Control of Chagas Disease (2000: Brasilia, Brazil) & World Health Organization (2002) Control of Chagas disease: second report of the WHO expert committee. Geneva: World Health Organization.


Coinfection by Trypanosoma cruzi and a fungal pathogen increases survival of Chagasic bugs: advice against a fungal control strategy

  • A. Laura Flores-Villegas (a1), Margarita Cabrera-Bravo (a1), José A. De Fuentes-Vicente (a2), J. Guillermo Jiménez-Cortés (a3), Paz María Salazar-Schettino (a1), Martha Irene Bucio-Torres (a1) and Alex Córdoba-Aguilar (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed