Skip to main content Accessibility help

Cloning and characterization of mariner-like elements in the soybean aphid, Aphis glycines Matsumura

  • O. Mittapalli (a1), L. Rivera-Vega (a1), B. Bhandary (a1), M.A. Bautista (a1), P. Mamidala (a1), A.P. Michel (a1), R.H. Shukle (a2) and M.A.R. Mian (a3)...


Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is currently the most important insect pest of soybean (Glycine max (L.) Merr.) in the United States and causes significant economic damage worldwide, but little is known about the aphid at the molecular level. Mariner-like transposable elements (MLEs) are ubiquitous within the genomes of arthropods and various other invertebrates. In this study, we report the cloning of MLEs from the soybean aphid genome using degenerate PCR primers designed to amplify conserved regions of mariner transposases. Two of the ten sequenced clones (designated as Agmar1 and Agmar2) contained partial but continuous open reading frames, which shared high levels of homology at the protein level with other mariner transposases from insects and other taxa. Phylogenetic analysis revealed Agmar1 to group within the irritans subfamily of MLEs and Agmar2 within the mellifera subfamily. Southern blot analysis and quantitative PCR analysis indicated a low copy number for Agmar1-like elements within the soybean aphid genome. These results suggest the presence of at least two different putative mariner-like transposases encoded by the soybean aphid genome. Both Agmar1 and Agmar2 could play influential roles in the architecture of the soybean aphid genome. Transposable elements are also thought to potentially mediate resistance in insects through changes in gene amplification and mutations in coding sequences. Finally, Agmar1 and Agmar2 may represent useful genetic tools and provide insights on A. glycines adaptation.


Corresponding author

*Authors for correspondence Fax: +01 330-263-3686 E-mail:


Hide All
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) Basic local alignment search tool. Journal of Molecular Biology 215, 403410.
Augé-Gouillou, C., Notareschi-Leroy, H., Abad, P., Periquet, G. & Bigot, Y. (2000) Phylogenetic analysis of the functional domains of mariner-like element (MLE) transposases. Molecular and General Genetics 264, 506513.
Barry, E.G., Witherspoon, D.J. & Lampe, D.J. (2004) A bacterial genetic screen identifies functional coding sequences of the insect mariner transposable element Famar 1 amplified from the genome of the earwig, Forficula auricularia. Genetics 166, 823833.
Bryan, G.J., Jacobson, J.W. & Hartl, D.L. (1987) Heritable somatic excision of a Drosophila transposon. Science 235, 16361638.
Bubner, B. & Baldwin, I.T. (2004) Use of real time PCR for determining copy number and zygosity in transgenic plants. Plant Cell Reports 23, 263271.
Capy, P., David, J.R. & Hartl, D.L. (1992) Evolution of the transposable element mariner in the Drososphila melanogaster species group. Genetica 86, 3746.
Cooley, L., Kelley, R. & Sprading, A. (1988) Insertional mutagenesis of the Drosophila genome with single P elements. Science 239, 11211128.
Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 17921797.
FAO Statistical Database (2010) FAOSTAT agriculture data. Available online at (accessed 28 November 2010).
Feinberg, A.P. & Vogelstein, B. (1983) A technique for radiolabeing DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132, 613.
Finston, T.L., Hebert, P.D.N. & Foottit, R. (1995) Genome size variation in aphids. Insect Biochemistry and Molecular Biology 25, 189196.
Hartl, D.L. (1989) Transposable element mariner in Drosophila species. pp. 531536 in Berg, D.E. & Howe, M.M. (Eds) Mobile DNA. Washington, DC, USA, American Society of Microbiology.
Hartl, D.L., Lohe, A.R. & Lozovskaya, E.R. (1997) Modern thoughts on an ancyent marinere: function, evolution, regulation. Annual Review of Genetics 31, 337358.
Hill, C.B., Li, Y. & Hartman, G.L. (2004) Resistance to the soybean aphid in soybean germplasm. Crop Science 44, 98106.
Hill, C.B., Crull, L., Herman, T.K., Voegtlin, D.J. & Hartman, G.L. (2010) A new soybean aphid (Hemiptera: Aphididae) biotype identified. Journal of Economic Entomology 103, 509515.
Izsvak, Z., Ivics, Z., Shimoda, N., Mohn, D., Okamoto, H. & Hackett, P.B. (1999) Short inverted-repeat transposable elements in teleost fish and implications for a mechanism of their amplification. Journal of Molecular Evolution 48, 1321.
Jacobson, J.W., Medhora, M.M. & Hartl, D.L. (1986) Molecular structure of a somatically unstable transposable element in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 83, 86848688.
Jarvik, T. & Lark, K.G. (1998) Characterization of Soymarl, a mariner element in soybean. Genetics 149, 15691574.
Jurka, J., Kapitonov, V.V., Pavlicek, A., Klonowski, P., Kohany, O. & Walichiewicz, J. (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenetic and Genome Research 110, 462467.
Kim, K.S., Hill, C.B., Hartman, G.L., Mian, R.M. & Diers, B.W. (2008) Discovery of soybean aphid biotypes. Crop Science 48, 923928.
Lampe, D.J., Walden, K.K.O. & Robertson, H.M. (2001) Loss of transposase–DNA interaction may underlie the divergence of mariner family transposable elements and the ability of more than one mariner to occupy the same genome. Molecular Biology and Evolution 18, 954961.
Leroy, H., Leroy, F., Auge-Gouillou, C., Castagnone-Sereno, P. & Vanlerberghe-Masutti, F. (2000) Identification of mariner-like elements from the root-knot nematode Meloidogyne spp. Molecular and Biochemical Parasitology 107, 181190.
Li, X., Schuler, M.A. & Berenbaum, M.R. (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology 52, 231253.
Lidholm, D.A., Lohe, A.R. & Hartl, D.L. (1993) The transposable element mariner mediates germline transformation in Drosophila melanogaster. Genetics 134, 859868.
Liu, D., Bischerour, J., Siddique, A., Buisine, N., Bigot, Y. & Chalmers, R. (2007) The human SETMAR protein preserves most of the activities of the ancestral Hsmar1 transposase. Molecular and Cellular Biology 27, 11251132.
Maruyama, K. & Hartl, D.L. (1991) Evolution of the transposable element mariner in Drosophila species. Genetics 128, 319329.
Medhora, M., Maruyana, K. & Hartl, D.L. (1991) Molecular and functional analysis of the mariner mutator element Mos1 in Drosophila. Genetics 128, 311318.
Mensah, C., DiFonzo, C., Nelson, R.L. & Wang, D. (2005) Resistance to soybean aphid in early maturing soybean germplasm. Crop Science 45, 22282233.
Mian, M.A.R., Hammond, R.B. & Martin, S.K. (2008a) New plant introductions with resistance to the soybean aphid. Crop Science 48, 10551061.
Mian, M.A.R., Kang, S.-T., Beil, S.E. & Hammond, R.B. (2008b) Genetic linkage mapping of the soybean aphid resistance gene in PI 243540. Theoretical and Applied Genetics 117, 955962.
Mittapalli, O., Shukle, R.H. & Wise, I.L. (2006) Identification of mariner-like elements in Sitodiplosis mosellana (Diptera: Cecidomyiidae). Canadian Entomologist 138, 138146.
Moran, N.A., Degnan, P.H., Santos, S.R., Dunbar, H.E. & Ochman, H. (2005) The players in a mutualistic symbiosis: Insects, bacteria, viruses and virulence genes. Proceedings of the National Academy of Sciences 102, 1691916926.
Muñoz-Lopez, M., Siddique, A., Bischerour, J., Lorite, P., Chalmers, R. & Palomeque, T. (2008) Transposition of Mboumar-9: identification of a new naturally active mariner-family transposon. Journal of Molecular Biology 382, 567572.
Nikoh, N., McCutcheon, J.P., Kudo, T., Miyagishima, S., Moran, N.A. & Nakabochi, A. (2010) Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its hosts. PLoS Genetics 6, e1000827.
Ragsdale, D.W., McCornack, B.P., Venette, R.C., Potter, B.D., MacRae, I.V., Hodgson, E.W., O'Neal, M.E., Johnson, K.D., O'Neil, R.J., DiFonzo, C.D., Hunt, T.E., Glogoza, P.A. & Cullen, E.M. (2007) Economic threshold for soybean aphid (Hemiptera: Aphididae). Journal of Economic Entomology 100, 12581267.
Robertson, H.M. (1993) The mariner transposable element is widespread in insects. Nature 362, 241245.
Robertson, H.M. & Lampe, D.J. (1995a) Distribution of transposable elements in arthropods. Annual Review of Entomology 40, 333357.
Robertson, H.M. & Lampe, D.J. (1995b) Recent horizontal transfer of a mariner transposable element among and between Diptera and Neuroptera. Molecular Biology and Evolution 12, 850862.
Robertson, H.M. & MacLeod, E.G. (1993) Five major subfamilies of mariner transposable elements in insects, including the Mediterranean fruit fly, and related arthropods. Insect Molecular Biology 2, 125139.
Sambrook, J. & Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual. 3rd edn. Cold Spring Harbor, NY, USA, Cold Spring Harbor Laboratory Press.
Schneider, D., Faure, D., Noirclerc-Savoye, M., Barriere, A.C., Coursange, E. & Blot, M. (2000) A broad-host-range plasmid for isolating mobile genetic elements in gram-negative bacteria. Plasmid 44, 201207.
Shukle, R.H. & Russell, V.W. (1995) Mariner transposase-like sequences from the Hessian fly, Mayetiola destructor. Journal of Heredity 86, 364368.
Simmons, G.M. (1992) Horizontal transfer of hobo transposable elements within the Drosophila melanogaster species complex, evidence from DNA sequencing. Molecular Biology and Evolution 9, 10501060.
Solomon, P.S., Ipcho, S.V.S., Hane, J.K., Tan, K.C. & Oliver, R.P. (2008) A quantitative PCR approach to determine gene copy number. Fungal Genetics Reports 55, 58.
Strausbaugh, L.D., Bourke, M.T., Sommer, M.T., Coon, M.E. & Berg, C.M. (1990) Probe mapping to facilitate transposon-based DNA sequencing. Proceedings of the National Academy of Sciences of the United States of America 87, 62136217.
Swofford, D.L. (2002) PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sunderland, MA, USA, Sinauer Associates.
TIAGC (The International Aphid Genomics Consortium) (2010) Genome Sequence of the Pea Aphid Acyrthosiphon pisum. PLoS Biology 8, e1000313.
Thompson, J.D., Gibson, T.J., Plewniak, F. & Jeanmougin, F. (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 48764882.
Venette, R.C. & Ragsdale, D.W. (2004) Assessing the invasion by soybean aphid (Homoptera: Aphididae): Where will it end? Annals of the Entomological Society of America 97, 219226.
Wu, Z., Schenk-Hamlin, D., Zhan, W., Ragsdale, D.W. & Heimpel, G.E. (2004) The soybean aphid in China: an historical review. Annals of the Entomological Society of America 97, 209218.
Zhang, G.R., Gu, C.H. & Wang, D.C. (2009) Molecular mapping of soybean aphid resistance genes in PI 567541B. Theoretical and Applied Genetics 118, 473482.


Cloning and characterization of mariner-like elements in the soybean aphid, Aphis glycines Matsumura

  • O. Mittapalli (a1), L. Rivera-Vega (a1), B. Bhandary (a1), M.A. Bautista (a1), P. Mamidala (a1), A.P. Michel (a1), R.H. Shukle (a2) and M.A.R. Mian (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed