Skip to main content Accessibility help

Biological and ecological evidences suggest Stipa krylovii (Pooideae), contributes to optimal growth performance and population distribution of the grasshopper Oedaleus asiaticus

  • X.B. Huang (a1) (a2), M.R. McNeill (a3), J.C. Ma (a1) (a2), X.H. Qin (a1) (a2), X.B. Tu (a1) (a2), G.C. Cao (a1) (a2), G.J. Wang (a1) (a2), X.Q. Nong (a1) (a2) and Z.H. Zhang (a1) (a2)...


Oedaleus asiaticus Bey. Bienko is a significant grasshopper pest species occurring in north Asian grasslands. Outbreaks often result in significant loss in grasses and economic losses. Interestingly, we found this grasshopper was mainly restricted to Stipa-dominated grassland. We suspected this may be related to the dominant grasses species, Stipa krylovii Roshev, and hypothesized that S. krylovii contributes to optimal growth performance and population distribution of O. asiaticus. A 4 year investigation showed that O. asiaticus density was positively correlated to the above-ground biomass of S. krylovii and O. asiaticus growth performance variables (survival rate, size, growth rate) were significantly higher in Stipa-dominated grassland. A feeding trial also showed that O. asiaticus had a higher growth performance when feeding exclusively on S. krylovii. In addition, the choice, consumption and the efficiency of conversion of ingested food (ECI) by O. asiaticus was highest for S. krylovii compared with other plant species found in the Asian grasslands. These ecological and biological traits revealed why O. asiaticus is strongly associated with Stipa-dominated grasslands. We concluded that the existence of S. krylovii benefited the growth performance and explained the distribution of O. asiaticus. These results are useful for improved pest management strategies and developing guidelines for the monitoring of grasshopper population dynamics against the background of vegetation succession and changing plant communities in response to activities such as grazing, fire and climate change.


Corresponding author

*Author for correspondence Phone: +010 82109585 Fax: +010 82109569 E-mail:


Hide All
Ali, J.G. & Agrawal, A.A. (2012) Specialist versus generalist insect herbivores and plant defense. Trends in Plant Science 17, 293302.
Behmer, S.T. (2009) Insect herbivore nutrient regulation. Annual Review of Entomology 54, 165187.
Bernays, E.A. & Chapman, R.F. (1994) Host Plant Selection by Phytophagous Insects. New York, USA, Springer.
Cease, J., Hao, S., Kang, L., Elser, J.J. & Harrison, J.F. (2010) Are color or high rearing density related to migratory polyphenism in the band-winged grasshopper, Oedaleus asiaticus? Journal of Insect Physiology 56, 926936.
Cease, A.J., Elser, J.J., Ford, C.F., Hao, S.G., Kang, L. & Harrison, J.F. (2012) Heavy livestock grazing promotes locust outbreaks by lowering plant nitrogen content. Science 335, 467469.
Chen, Z.Z. & Wang, S.P. (2000) Typical Steppe Ecosystems of China. Beijing, Science Press.
Franzke, A., Unsicker, S.B. & Specht, J. (2010) Being a generalist herbivore in a diverse world: how do diets from different grasslands influence food plant selection and fitness of the grasshopper Chorthippus parallelus . Ecological Entomology 35, 126138.
Gols, R., Bukovinszky, T., van Dam, N.M., Dicke, M., Bullock, J.M. & Harvey, J.A. (2008) Performance of generalist and specialist herbivores and their endoparasitoids differs on cultivated and wild Brassica populations. Journal of Chemical Ecology 34, 132143.
Guo, Z.W., Li, H.C. & Gan, Y.L. (2006) Grasshopper (Orthoptera: Acrididae) biodiversity and grassland ecosystems. Insect Science 13, 221227.
Han, J.G., Zhang, Y.J., Wang, C.J., Bai, W.M., Wang, Y.R., Han, G.D. & Li, L.H. (2008) Rangeland degradation and restoration management in China. Rangeland Journal 30, 233239.
Hopkins, R.J., van Dam, N.M. & van Loon, J.J.A. (2009) Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annual Review of Entomology 54, 5783.
Huang, X., MacNeill, M. & Zhang, Z. (2016) Quantitative analysis of plant consumption and preference by Oedaleus asiaticus (Acrididae: Oedipodinae) in changed plant communities consisting of three grass species. Environmental Entomology 45, 163171.
Huang, X.B. (2015) Comprehensive evaluation and risk assessment of grasshoppers’ habitat based on a projection pursuit model. Acta Prataculture Sinica 24, 2533.
Ibanez, S., Manneville, O., Miquel, C., Taberlet, P., Valentini, A., Aubert, S., Coissac, E., Colace, M.P., Duparc, Q., Lavorel, S. & Moretti, M. (2013) Plant functional traits reveal the relative contribution of habitat and food preferences to the diet of grasshoppers. Oecologia 173, 14591470.
Li, H.C., Wang, Z. & Chen, Y.L. (1987) Food consumption and utilization by three species of Acridoids in typical steppe. Acta Ecologica Sinica 7, 331338.
Liu, G.H., Wang, G.J., Wang, S.P., Han, J.G., Wang, X.R. & Hao, S.G. (2013) The diet composition and trophic niche of main herbivores in the Inner Mongolia desert steppe. Acta Agrestia Sinica 33, 856866.
Liu, G.S., Zhuang, L.W. & Guo, A.H. (2006) Primary study on climatic prediction on nymph stages of ODA (Oedalens asiaticus) in rangeland of Inner Mongolia. Prataculture Science 1, 7174.
Lomer, C.J. & Prior, C. (2001) Biological control of locusts and grasshoppers. Annual Review of Entomology 46, 667702.
Lu, H., Yu, M., Zhang, L.S., Zhang, Z.H. & Long, R.J. (2005) Effects of foraging by different instar and density of Oedaleus asiaticus B. Bienko on forage yield. Acta Prataculture Science 31, 5558.
Masloski, K., Greenwood, C., Reiskind, M. & Payton, M. (2014) Evidence for diet-driven habitat partitioning of melanoplinae and gomphocerinae (Orthoptera: Acrididae) along a vegetation gradient in a Western Oklahoma Grassland. Environmental Entomology 43, 12091214.
Pérez, H.N., Díaz, S., Vendramini, F., Cornelissen, J.H.C., Gurvich, D.E. & Cabido, M. (2003) Leaf traits and herbivore selection in the field and in cafeteria experiments. Austral Ecology 28, 642650.
Powell, G., Tosh, C.R. & Hardie, J. (2006) Host plant selection by aphids: behavioral, evolutionary, and applied perspectives. Annual Review of Entomology 51, 309330.
Rath, S.S., Prasad, B.C. & Sinha, B.R.R.P. (2003) Food utilization efficiency in fifth instar larvae of Antheraeamy litta (Lepidoptera: Saturniidae) infected with Nosema sp. and its effect on reproductive potential and silk production. Journal of Invertebrate Pathology 83, 19.
Raubenheimer, D. & Simpson, S.J. (2004) Nutrient balancing in grasshoppers: behavioural and physiological correlates of dietary breadth. Journal of Experimental Biology 206, 16691681.
Raymond, B.V., David, N.K. & Zhong, C. (2004) Performance of a generalist grasshopper on a C3 and a C4 grass: compensation for the effects of elevated CO2 on plant nutritional quality. Oecologia 140, 96103.
Rominger, A.J., Miller, T.E.X. & Collins, S.L. (2009) Relative contributions of neutral and niche-based processes to the structure of a desert grassland grasshopper community. Oecologia 161, 791800.
Roy, A., Walker, W.B., Vogel, H., Chattington, S., Larsson, M.C., Anderson, P., Heckel, D.G. & Schlyter, F. (2016) Diet dependent metabolic responses in three generalist insect herbivores Spodoptera spp. Insect Biochemistry and Molecular Biology. 71, 91105.
Schoonhoven, L.M., van Loon, J.J.A. & Dicke, M. (2005) Insect-plant Biology. Oxford, Oxford University Press.
Schutz, S., Weißbecker, B., Klein, A. & Hummel, H.E. (1997) Host plant selection of the Colorado potato beetle as influenced by damage induced volatiles of the potato plant. Naturwissenschaften 84, 212217.
Scriber, J.M. (2002). Evolution of insect-plant relationships: chemical constraints, coadaptation, and concordance of insect/plant traits. Entomologia Experimentalis et Applicata 104, 217235.
Simpson, S.J., Sibly, R.M., Lee, K.P., Behmer, S.T. & Raubenheimer, D. (2004) Optimal foraging when regulating intake of multiple nutrients. Animal Behaviour 68, 12991311.
Stige, L.C., Chan, K.S., Zhang, Z.B., Frank, D. & Stenseth, N.C. (2007) Thousand-year-long Chinese time series reveals climatic forcing of decadal locust dynamics. Proceedings of the National Academy of Sciences 104, 1618816193.
Unsicker, S.B., Oswald, A., Kohler, G. & Weisser, W.W. (2008) Complementarity effects through dietary mixing enhance the performance of a generalist insect herbivore. Oecologia 156, 313324.
Unsicker, S.B., Franzke, A., Specht, J., Köhler, G., Linz, J., Renker, C., Stein, C. & Weisser, W.W. (2010) Plant species richness in montane grasslands affects the fitness of a generalist grasshopper species. Ecology 91, 10831091.
Waldbauer, G.P. (1968) The consumption and utilization of food by insects. Advances in Insect Physiology 5, 229288.
Wang, D.C. (2004) The study on the breakout and disserving of grasshopper in Sunitezuo Banner, Inner Mongolia. Inner Mongolia Prataculture 16, 1415.
Whitman, D.W. (1990) Grasshopper chemical communication. pp. 357391 in Chapman, R.F. & Joern, A. (Eds) Biology of Grasshoppers. New York, John Wiley and Sons.
Wu, H.H., Xu, Y.H., Cao, G.C., Gexigedu, R., Liu, Z.Y. & He, B., Ererdengba, T., Wang, G.J. (2012) Ecological effects of typical grassland types in Inner Mongolia on grasshopper community. Scientia Agricultura Sinica 45, 41784186.
Zhang, M.C. & Fielding, D.J. (2011) Populations of the Northern Grasshopper, Melanoplus borealis (Orthoptera: Acrididae), in Alaska are rarely food limited. Environmental Entomology 40, 541548.
Zhang, W.Z., He, B., Cao, G.C., Zhang, Z.H., Wu, Y.H., Liu, S.C. & Wang, H.R. (2013) Quantitative analysis of the effects of Stipa krylovii and Leymus chinensis on the factors of vatiability of Odaleous asiaticus . Acta Prataculture Sinica 22, 302309.
Zhang, Z.J., Elser, J.J., Cease, A.J., Zhang, X.M. & Yu, Q. (2014) Grasshoppers regulate N:P stoichiometric homeostasis by changing phosphorus contents in their frass. PLoS ONE 9, e103697-e103697.
Zhu, H., Wang, D.L., Wang, L., Bai, Y.G., Fang, J. & Liu, J. (2012) The effects of large herbivore grazing on meadow steppe plant and insect diversity. Journal of Applied Ecology 49, 10751083.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed