Skip to main content Accessibility help
×
Home

Bioactivity of some Apiaceae essential oils and their constituents against Sitophilus zeamais (Coleoptera: Curculionidae)

  • J. S. Rosa (a1), L. Oliveira (a1), R. M. O. F. Sousa (a2) (a3) (a4), C. B. Escobar (a1) and M. Fernandes-Ferreira (a2) (a3) (a4) (a5)...

Abstract

Sitophilus zeamais is a key pest of stored grains. Its control is made, usually, using synthetic insecticides, despite their negative impacts. Botanical insecticides with fumigant/repellent properties may offer an alternative solution. This work describes the effects of Anethum graveolens, Petroselinum crispum, Foeniculum vulgare and Cuminum cyminum essential oils (EOs) and (S)-carvone, cuminaldehyde, estragole and (+)-fenchone towards adults of S. zeamais. Acute toxicity was assessed by fumigation and topical application. Repellence was evaluated by an area preference bioassay and two-choice test, using maize grains. LC50 determined by fumigation ranged from 51.8 to 535.8 mg L−1 air, with (S)-carvone being the most active. LD50 values for topical applications varied from 23 to 128 µg per adult for (S)-carvone > cuminaldehyde > A. graveolens > C. cyminum > P. crispum. All EOs/standard compounds reduced significantly the percentage of insects attracted to maize grains (65–80%) in the two-choice repellence test, whereas in the area preference bioassay RD50 varied from 1.4 to 45.2 µg cm−2, with cuminaldehyde, (S)-carvone and estragole being strongly repellents. Petroselinum crispum EO and cuminaldehyde affected the nutritional parameters relative growth rate, efficiency conversion index of ingested food and antifeeding effect, displaying antinutritional effects toward S. zeamais. In addition, P. crispum and C. cyminum EOs, as well as cuminaldehyde, showed the highest acetylcholinesterase inhibitory activity in vitro (IC50 = 185, 235 and 214.5 µg mL−1, respectively). EOs/standard compounds exhibited acute toxicity, and some treatments showed antinutritional effects towards S. zeamais. Therefore, the tested plant products might be good candidates to be considered to prevent damages caused by this pest.

Copyright

Corresponding author

Author for correspondence: L. Oliveira, E-mail: maria.lm.oliveira@uac.pt

References

Hide All
Aazza, S, Lyoussi, B and Miguel, MG (2011) Antioxidant and antiacetylcholinesterase activities of some commercial essential oils and their major compounds. Molecules 16, 76727690. https://doi:10.3390/molecules16097672.
Abdelgaleil, SAM, Mohamed, MIE, Badawy, MEI and El-Arami, SAA (2009) Fumigant and contact toxicities of monoterpenes to Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase activity. Journal of Chemical Ecology 35, 518525. https://doi:10.1007/s10886-009-9635-3.
Arruda, M, Viana, H, Rainha, N, Neng, NR, Rosa, JS, Nogueira, JMF and Barreto, MC (2012) Anti-acetylcholinesterase and antioxidant activity of essential oils from Hedychium gardnerianum Sheppard ex Ker-Gawl. Molecules 17, 30823092. https://doi:10.3390/molecules17033082.
Askar, SI, Al-Assal, MS and Nassar, AMK (2016) Efficiency of some essential oils and insecticides in the control of some Sitophilus insects (Coleoptera: Curculionidae). Egyptian Journal of Plant Protection. Research 4, 3955.
Athanassiou, CG, Kavallieratos, NG and Campbell, JF (2017) Competition of three species of Sitophilus on rice and maize. PLoS One 12, e0173377. https://doi:10.1371/journal.pone.0173377.
Bedini, S, Bougherra, HH, Flamini, G, Cosci, F, Belhamel, K, Ascrizzi, R and Conti, B (2016) Repellency of anethole- and estragole-type fennel essential oils against stored prain pest: the different twins. Bulletin of Insectology 69, 149157.
Benzi, V, Stefanazzi, N and Ferrero, AA (2009) Biological activity of essential oils from leaves and fruits of pepper tree (Schinus molle L.) to control rice weevil (Sitophilus oryzae L.). Chilean Journal of Agricultural Research 69, 154159. http://dx.doi.org/10.4067/S0718-58392009000200004.
Bertoli, A, Conti, B, Mazzoni, V, Meini, L and Pistelli, L (2012) Volatile chemical composition and bioactivity of six essential oils against the stored food insect Sitophilus zeamais Motsch. (Coleoptera Dryophthoridae). Natural Product Research 26, 20632071. https://doi:10.1080/14786419.2011.607453.
Bonesi, M, Menichini, F, Tundis, R, Loizzo, MR, Conforti, F, Passalacqua, NG, Statti, GA and Menichini, F (2010) Acetylcholinesterase and butyrylcholinesterase inhibitory activity of Pinus species essential oils and their constituents. Journal of Enzyme Inhibition and Medicinal Chemistry 25, 622628. https://doi:10.3109/14756360903389856.
Boulogne, I, Petit, P, Ozier-Lafontaine, H, Desfontaines, L and Loranger-Merciris, G (2012) Insecticidal and antifungal chemicals produced by plants: a review. Environmental Chemistry Letters 10, 325347.
Camaroti, JRSL, de Almeida, WA, do Rego Belmonte, B, de Oliveira, APS, de Albuquerque Lima, T, Ferreira, MRA, Paiva, PMG, Soares, LAL, Pontual, EV and Napoleão, TH (2018) Sitophilus zeamais adults have survival and nutrition affected by Schinus terebinthifolius leaf extract and its lectin (SteLL). Industrial Crops and Products 116, 8189. https://doi.org/10.1016/j.indcrop.2018.02.065.
Chaubey, MK (2008) Fumigant toxicity of essential oils from some common spices against pulse beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). Journal of Oleo Science 57, 171179. https://doi.org/10.5650/jos.57.171.
Chaubey, MK (2011) Fumigant toxicity of essential oils against rice weevil Sitophilus oryzae L. (Coleoptera: Curculionidae). Journal of Biological Sciences 11, 411416. https://doi:10.3923/jbs.2011.411.416.
Coats, JR, Karr, LL and Drewes, CD (1991) Toxicity and neurotoxic effects of monoterpenoids in insects and earthworms. In Heden, PA (ed.), Naturally Occurring Pest Bioregulators. ACS Symposium Series 449, American Chemical Society, Washington, DC, pp. 305316. doi: 10.1021/bk-1991-0449.ch020.
Colares, T, Dionello, RG and Radunz, LL (2016) Susceptibility of different genotypes of rice to Sitophilus zeamais Motschulsky 1885 attack (Coleoptera: Curculionidae). Revista Brasileira de Engenharia Agrícola e Ambiental 20, 275279. http://dx.doi.org/10.1590/18071929/agriambi.v20n3p275-279.
Cosimi, S, Rossi, E, Cioni, PL and Canale, A (2009) Bioactivity and qualitative analysis some essential oils from Mediterranean plants against stored-product pests: evaluation of repellency against Sitophilus zeamais Motschulsky, Cryptolestes ferrugineus (Stephens) and Tenebrio molitor (L.). Journal of Stored Products Research 45, 125132. https://doi.org/10.1016/j.jspr.2008.10.002.
de Lira, CS, Pontual, EV, de Albuquerque, LP, Paiva, LM, Paiva, PMG, de Oliveira, JV, Napoleão, TH and Navarro, DMDAF (2015) Evaluation of the toxicity of essential oil from Alpinia purpurata inflorescences to Sitophilus zeamais (maize weevil). Crop Protection 71, 95100. https://doi.org/10.1016/j.cropro.2015.02.004.
Ebadollahi, A (2011) Susceptibility of two Sitophilus species (Coleoptera: Curculionidade) to essential oils from Foeniculum vulgare and Satureja hortensis. Ecologia Balkanica 3, 18.
Ebadollahi, A (2013) Plant essential oils from Apiaceae family as alternatives to conventional insecticides. Ecologia Balkanica 5, 149172.
Ebadollahi, A, Nouri-Ganbalani, G, Hoseini, SA and Sadeghi, GR (2012) Insecticidal activity of essential oils of five aromatic plants against Callosobruchus maculates F. (Coleoptera: Bruchidae) under laboratory conditions. Journal of Essential Oil Bearing Plants 15, 256262. https://doi.org/10.1080/0972060X.2012.10644044.
Ellman, GL, Courtney, KD, Valentino, A Jr and Feathertone, RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology 7, 8895. https://doi.org/10.1016/0006-2952(61)90145-9.
Evergetis, E, Michaelakis, A and Haroutounian, SA (2012) Essential oils of Umbelliferae (Apiaceae) family taxa as emerging potent agents for mosquito control. In Soloneski, S (ed.), Integrated Pest Management and Pest Control – Current and Future Tactics. IntechOpen Limited, London, UK, pp. 613638. Available from: http://www.intechopen.com/books/integrated-pest-management-and-pestcontrol-current-and-future-tactics/essential-oils-of-umbelliferae-apiaceae-family-taxa-as-emerging-potentagents-for-mosquito-control. DOI: 10.5772/31777.
Evergetis, E, Michaelakis, A and Haroutounian, SA (2013) Exploitation of Apiaceae family essential oils as potent biopesticides and rich source of phellandrenes. Industrial Crops and Products 41, 365370. https://doi.org/10.1016/j.indcrop.2012.04.058.
Fang, R, Jiang, CH, Wang, XY, Zhang, HM, Liu, ZL, Zhou, L, Du, SS and Deng, ZW (2010) Insecticidal activity of essential oil of Carum carvi fruits from China and its main components against two grain storage insects. Molecules 15, 93919402. https://doi.org/10.3390/molecules15129391.
França, SM, Oliveira, JV, Esteves Filho, AB and Oliveira, CM (2012) Toxicity and repellency of essential oils to Zabrotes subfasciatus (Boheman) (Coleoptera, Chrysomelidae, Bruchinae) in Phaseolus vulgaris L. Acta Amazonica 42, 381386. http://dx.doi.org/10.1590/s0100-204x2017000100002.
Huang, Y, Tan, JMWL, Kini, RM and Ho, SH (1997) Toxic and antifeedant action of nutmeg oil against Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch. Journal of Stored Products Research 33, 289298. https://doi.org/10.1016/S0022-474X(97)00009-X.
Huang, Y, Lam, SL and Ho, SH (2000) Bioactivities of essential oil from Elletaria cardamomum (L.) Maton. to Sitophilus zeamais Motschulsky and Tribolium castaneum (Herbst). Journal of Stored Products Research 36, 107117. https://doi:10.1016/S0022-474X(99)00040-5.
Huang, Y, Ho, SH, Lee, HC and Yap, YL (2002) Insecticidal properties of eugenol, isoeugenol and methyleugenol and their effects on nutrition of Sitophilus zeamais Motsch. (Coleoptera: Curculionidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Journal of Stored Products Research 38, 403412.
IBM (2015) IBM SPSS statistics for Windows, Version 23.0. IBM Corp, Armonk, NY.
Ingkanian, K, Temkitthawon, P, Chuenchom, K, Yuyaem, T and Thongnoi, W (2003) Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies. Journal of Ethnopharmacology 89, 261264. https://doi.org/10.1016/j.jep.2003.08.008.
Isman, MB and Akhtar, Y (2007) Plant natural products as a source for developing environmentally acceptable insecticides. In Ishaaya, I, Nauen, R and Horowitz, AR (eds), Insecticides Design Using Advanced Technologies. Berlin, Heidelberg: Springer, pp. 235248.
Isman, MB and Tak, JH (2017) Inhibition of acetylcholinesterase by essential oils and monoterpenoids: a relevant mode of action for insecticidal essential oils? Biopesticides International 13, 7178.
Jankowska, M, Rogalska, J, Wyszkowska, J and Stankiewicz, M (2018) Molecular targets for components of essential oils in the insect nervous system – a review. Molecules 23, 34. https://doi:10.3390/molecules23010034.
Jung, HA, Min, B-S, Yokozawa, T, Lee, J-H, Kim, YS and Choi, JS (2009) Anti-Alzheimer and antioxidant activities of Coptidis rhizoma alkaloids. Biological and Pharmaceutical Bulletin 32, 14331438.
Kim, SI, Roh, JY, Kim, DH, Lee, HS and Ahn, YJ (2003) Insecticidal activities of aromatic plant extracts and essential oils against Sitophilus oryzae and Callosobruchus chinensis. Journal of Stored Products Research 39, 293303. https://doi.org/10.1016/S0022-474X(02)00017-6.
Kim, SW, Kang, J and Park, IK (2013) Fumigant toxicity of Apiaceae essential oils and their constituents against Sitophilus oryzae and their acetylcholinesterase inhibitory activity. Journal of Asia-Pacific Entomology 16, 443447. https://doi.org/10.1016/j.aspen.2013.07.002.
Klys, M, Malejky, N and Nowak-Chmura, M (2017) The repellent effect of plants and their active substances against the beetle storage pests. Journal of Stored Products Research 74, 6677. https://doi.org/10.1016/j.jspr.2017.10.006.
Kordali, S, Yildirim, E, Yazici, G, Emsen, B, Kabaagac, G and Ercisli, S (2012) Fumigant toxicity of essential oils of nine plant species from Asteraceae and Clusiaceae against Sitophilus granarius (L.) (Coleoptera: Curculionidae). Egyptian Journal of Biological Pest Control 22, 1114.
Kostyukovsky, M, Rafaeli, A, Gileadi, C, Demchenko, N and Shaaya, E (2002) Activation of octopaminergic receptors by essential oil constituents isolate from aromatic plants: possible mode of action against insect pest. Pest Management Science 58, 11011106. https://doi.org/10.1002/ps.548.
Koul, O, Smirle, M and Isman, M (1990) Asarones from Acorus calamus oil: their effect on feeding behavior and dietary utilization in Peridroma saucia. Journal of Chemical Ecology 16, 19111920.
Kumar, P, Mishra, S, Malik, A and Satya, S (2012) Compositional analysis and insecticidal activity of Eucalyptus globulus (family: Myrtaceae) essential oil against housefly (Musca domestica). Acta Tropica 122, 212218. https://doi.org/10.1016/j.actatropica.2012.01.015.
Lee, S, Peterson, CJ and Coats, JR (2003) Fumigation toxicity of monoterpenoids to several stored product insects. Journal of Stored Products Research 39, 7785. https://doi.org/10.1016/S0022-474X(02)00020-6.
Lee, HR, Kim, GH, Choi, WS and Park, IK (2017) Repellent activity of Apiaceae plant essential oils and their constituents against adult German cockroaches. Journal of Economic Entomology 110, 552557. https://doi.org/10.1093/jee/tow290.
Liu, ZL and Ho, SH (1999) Bioactivity of the essential oil extracted from Evodia rutaecarpa Hook f. et Thomas against the grain storage insects, Sitophilus zeamais Motsch. and Tribolium castaneum (Herbst). Journal of Stored Products Research 35, 317328. https://doi:10.1016/S0022-474X(99)00015-6.
Liu, ZL, Chu, SS and Jiang, GH (2011) Insecticidal activity and composition of essential oil of Ostericum sieboldii (Apiaceae) against Sitophilus zeamais and Tribolium castaneum. Records of Natural Products 5, 7481.
López, MD and Pascual-Villalobos, MJ (2010) Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Industrial Crops and Products 31, 284288. https://doi.org/10.1016/j.indcrop.2009.11.005.
López, MD, Contreras, J and Pascual-Villalobos, MJ (2010) Selection for tolerance to volatile monoterpenoids in Sitophilus oryzae (L.), Rhyzopertha dominica (F.) and Cryptolestes pusillus (Schoenherr). Journal of Stored Products Research 46, 5258. https://doi.org/10.1016/j.jspr.2009.09.003.
López, SB, López, ML, Aragón, LM, Tereschuk, ML, Slanis, AC, Feresin, GE, Zygadlo, JA and Tapia, AA (2011) Composition and anti-insect activity of essential oils from Tagetes l. species (Asteraceae, Helenieae) on Ceratitis capitata Wiedemann and Triatoma infestans Klug. Journal of Agricultural and Food Chemistry 59, 52865292. https://doi.org10.1021/jf104966b.
Magan, N, Hope, R, Cairns, V and Aldred, D (2003) Postharvest fungal ecology: impact of fungal growth and mycotoxin accumulation in stored grain. European Journal of Plant Pathology 109, 723730. https://doi.org/10.1023/A:1026082425177.
Maroufpoor, M, Ebadollahi, A, Vafaee, Y and Badiee, E (2016) Chemical composition and toxicity of the essential oil of Coriandrum sativum L. and Petroselinum crispum L. against three Stored-Product insect pests. Journal of Essential Oil Bearing Plants 19, 19932002. https://doi.org/10.1080/0972060X.2016.1256234.
Massango, HGLL, Faroni, LRA, Haddi, K, Heleno, FF, Jumbo, LOV and Oliveira, EE (2016) Toxicity and metabolic mechanisms underlying the insecticidal activity of parsley essential oil on bean weevil, Callosobruchus macuatus. Journal of Pest Science 90, 723733. https://doi.org/10.1007/s10340-016-0826-8.
Ojo, JA and Omoloye, AA (2016) Development and life history of Sitophilus zeamais (Coleoptera: Curculionidae) on cereal crops. Advances in Agriculture 2016, 18. https://dx.doi.org/10.1155/2016/7836379.
Orhan, IE, Senol, FS, Ozturk, N, Celik, SA, Pulur, A and Kan, Y (2013) Phytochemical contents and enzyme inhibitory and antioxidant properties of Anethum graveolens L. (dill) samples cultivated under organic and conventional agricultural conditions. Food and Chemical Toxicology 59, 96103. https://doi:10.1016/j.fct.2013.05.053.
Pavela, R and Vrchotová, N (2013) Insecticidal effect of furanocoumarins from fruits of Angelica archangelica L. against larvae Spodoptera littoralis Boisd. Industrial Crops and Products 43, 3339. https//doi.org10.1016/j.indcrop.2012.06.044.
Rattan, RS (2010) Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protection 29, 913920. https://doi.org/10.1016/j.cropro.2010.05.008.
Regnault-Roger, C, Vincent, C and Arnason, JT (2012) Essential oils in insect control: low-risk products in a high-stakes world. Annual Review of Entomology 57, 405424. https://doi.org/10.1146/annurev-ento-120710-100554.
Santos, TC, Gomes, TM, Pinto, BAS, Camara, AL and Paes, AMA (2018) Naturally occurring acetylcholinesterase inhibitors and their potential use for Alzheimer's disease therapy. Frontiers in Pharmacology 9, 1192.
Scriber, JM and Slansky, F Jr (1981) The nutritional ecology of immature insects. Annual Review of Entomology 26, 183211. https://doi:10.1146/annurev.en.26.010181.001151.
Senthil-Nathan, S, Chung, PG and Murugan, K (2005) Effect of biopesticides applied separately or together on nutritional indices of the rice leaf folder Cnaphalocrocis medinalis. Phytoparasitica 33, 187195. https://doi.org/10.1007/BF03029978.
Seo, SM, Jung, CS, Kang, J, Lee, HR, Kim, SW, Hyun, J and Park, IK (2015) Larvicidal and acetylcholinesterase inhibitory activity of Apiaceae plant essential oils and their constituents against Aedes albopictus, and formulation development. Journal of Agricultural and Food Chemistry 63, 99779986. https://doi:10.1021/acs.jafc.5b03586.
Sousa, RMOF, Rosa, JS, Oliveira, L, Cunha, A and Fernandes-Ferreira, M (2013) Activities of Apiaceae essential oils activities against armyworm, Pseudaletia unipuncta (Lepidoptera: Noctuidae). Journal of Agricultural and Food Chemistry 61, 76617672. https://doi:10.1021/jf403096d.
Sousa, RMOF, Rosa, JS, Oliveira, L, Cunha, A and Fernandes-Ferreira, M (2015 a) Activities of Apiaceae essential oils and volatile compounds on hatchability, development, reproduction and nutrition of Pseudaletia unipuncta (Lepidoptera: Noctuidae). Industrial Crops and Products 63, 226237. https://doi:10.1016/j.indcrop.2014.09.052.
Sousa, RMOF, Rosa, JS, Silva, CA, Almeida, MTM, Novo, MT, Cunha, AC and Fernandes-Ferreira, M (2015 b) Larvicidal, molluscicidal and nematicidal activities of essential oils and compounds from Foeniculum vulgare. Journal of Pest Science 88, 413426. htpps://doi:10.1007/s10340-014-0628-9.
Sousa, RMOF, Rosa, JS, Cunha, AC and Fernandes-Ferreira, M (2017) Molluscicidal activity of four Apiaceae essential oils against the freshwater snail Radix peregra. Journal of Pest Science 90, 971984. https://doi.org/10.1007/s10340-017-0842-3.
Stefanazzi, N, Stadler, T and Ferrero, A (2011) Composition and toxic, repellent and feeding deterrent activity of essential oils against the stored-grain pests Tribolium castaneum (Coleoptera: Tenebrionidae) and Sitophilus oryzae (Coleoptera: Curculionidae). Pest Management Science 67, 639646. https://doi:10.1002/ps.2102.
Tripathi, AK, Prajapati, V, Aggarwal, KK, Khanuja, SPS and Kumar, S (2000) Repellency and toxicity of oil from Artemisia annua to certain stored-product beetles. Journal of Economic Entomology 93, 4347. https://doi.org/10.1603/0022-0493-93.1.43.
Tripathi, AL, Upadhyay, S, Bhuiyan, M and Bhattacharya, PR (2009) A review on prospects of essential oils as biopesticide in insect-pest management. Journal of Pharmacognosy and Phytotherapy 1, 5263.
Wang, JL, Li, Y and Lei, CL (2009) Evaluation of monoterpenes for the control of Tribolium castaneum (Herbst) and Sitophilus zeamais Motschulsky. Natural Product Research 23, 10801088. https://doi.org/10.1080/14786410802267759.
Yang, K, Zhou, YX, Wang, CF, Du, SS, Deng, ZW, Liu, QZ and Liu, ZL (2011) Toxicity of Rhododendron anthopogonoides essential oil and its constituent compounds towards Sitophilus zeamais. Molecules 16, 73207330. https://doi.org/10.3390/molecules16097320.
Yazdani, E, Sendi, JJ, Aliakbar, A and Senthil-Nathan, S (2013) Effect of Lavandula angustifolia essential oil against lesser mulberry pyralid Glyphodes pyloalis Walker (Lep: Pyralidae) and identification of its major derivatives. Pesticide Biochemistry and Physiology 107, 250257. https://doi.org/10.1016/j.pestbp.2013.08.002.
Yeom, HJ, Kang, JS, Kim, GH and Park, IK (2012) Insecticidal and acetylcholine esterase inhibition activity of Apiaceae plant essential oils and their constituents against adults of German cockroach (Blattella germanica). Journal of Agricultural and Food Chemistry 60, 71947203. https://doi:10.1021/jf302009w.
Yildirim, E, Emsen, B and Kordali, S (2013) Insecticidal effects of monoterpenes on Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Journal of Applied Botany and Food Quality 86, 198204. https://doi:10.5073/JABFQ.2013.086.027.

Keywords

Bioactivity of some Apiaceae essential oils and their constituents against Sitophilus zeamais (Coleoptera: Curculionidae)

  • J. S. Rosa (a1), L. Oliveira (a1), R. M. O. F. Sousa (a2) (a3) (a4), C. B. Escobar (a1) and M. Fernandes-Ferreira (a2) (a3) (a4) (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed