Skip to main content Accessibility help
×
Home

Assessment of beetle diversity, community composition and potential threats to forestry using kairomone-baited traps

  • S. Olivier-Espejel (a1), B.P. Hurley (a1) and J. Garnas (a1)

Abstract

Traps designed to capture insects during normal movement/dispersal, or via attraction to non-specific (plant) volatile lures, yield by-catch that carries valuable information about patterns of community diversity and composition. In order to identify potential native/introduced pests and detect predictors of colonization of non-native pines, we examined beetle assemblages captured in intercept panel traps baited with kairomone lures used during a national monitoring of the woodwasp, Sirex noctilio, in Southern Africa. We identified 50 families and 436 morphospecies of beetles from nine sites sampled in both 2008 and 2009 and six areas in 2007 (trap catch pooled by region) across a latitudinal and elevational gradient. The most diverse groups were mainly those strongly associated with trees, known to include damaging pests. While native species dominated the samples in terms of richness, the dominant species was the introduced bark beetle Orthotomicus erosus (Curculionidae: Scolytinae) (22 ± 34 individuals/site). Four Scolytinae species without previous records in South Africa, namely Coccotrypes niger, Hypocryphalus robustus (formerly Hypocryphalus mangiferae), Hypothenemus birmanus and Xyleborus perforans, were captured in low abundances. Communities showed temporal stability within sites and strong biogeographic patterns across the landscape. The strongest single predictors of community composition were potential evaporation, latitude and maximum relative humidity, while the strongest multifactor model contained elevation, potential evaporation and maximum relative humidity. Temperature, land use variables and distance to natural areas did not significantly correlate with community composition. Non-phytophagous beetles were also captured and were highly diverse (32 families) perhaps representing important beneficial insects.

Copyright

Corresponding author

*Address for correspondence Phone: +1 603 862 2094 Fax: +1 603 862 4976 E-mail: Sarai.Olivier@fabi.up.ac.za

References

Hide All
Al Adawi, A.O., Al Jabri, R.M., Deadman, M.L., Barnes, I., Wingfield, B. & Wingfield, M.J. (2013) The mango sudden decline pathogen, Ceratocystis manginecans, is vectored by Hypocryphalus mangiferae (Coleoptera: Scolytinae) in Oman. European Journal of Plant Pathology 135, 243251.
Aukema, J.E., McCullough, D.G., Von Holle, B., Liebhold, A.M., Britton, K. & Frankel, S.J. (2010) Historical accumulation of nonindigenous forest pests in the continental United States. BioScience 60, 886897.
Babin-Fenske, J., Anand, M. & Alarie, Y. (2008) Rapid morphological change in stream beetle museum specimens correlates with climate change. Ecological Entomology 33, 646651.
Baylis, N.T., De Ronde, C. & James, D.B. (1986) Observations of damage of a secondary nature following a wild fire at the Otterford State Forest. South African Forestry Journal 137, 3637.
Berndt, L.A., Brockerhoff, E.G. & Jactel, H. (2008) Relevance of exotic pine plantations as a surrogate habitat for ground beetles (Carabidae) where native forest is rare. Biodiversity and Conservation 17, 11711185.
Brockerhoff, E.G., Bain, J., Kimberley, M. & Knížek, M. (2006 a) Interception frequency of exotic bark and ambrosia beetles (Coleoptera: Scolytinae) and relationship with establishment in New Zealand and worldwide. Canadian Journal of Forest Research 36, 289298.
Brockerhoff, E.G., Jones, D.C., Kimberley, M.O., Suckling, D.M. & Donaldson, T. (2006 b) Nationwide survey for invasive wood-boring and bark beetles (Coleoptera) using traps baited with pheromones and kairomones. Forest Ecology and Management 228, 234240.
Buchholz, S., Kreuels, M., Kronshage, A., Terlutter, H. & Finch, O.D. (2011) Bycatches of ecological field studies: bothersome or valuable? Methods in Ecology and Evolution 2, 99102.
CABI (2016) Invasive Species Compendium. Wallingford, UK, CAB International. Available online at http://www.cabi.org/isc
Chao, N., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H., Colwell, R.K. & Ellison, A.M. (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84, 4567.
Chen, Z., Grady, K., Stephens, S., Villa-Castillo, J. & Wagner, M.R. (2006) Fuel reduction treatment and wildfire influence on carabid and tenebrionid community assemblages in the ponderosa pine forest of northern Arizona, USA. Forest Ecology and Management 225, 168177.
Crook, D.J., Francese, J.A., Rietz, M.L., Lance, D.R., Hull-Sanders, H.M., Mastro, V.C., Silk, P. J. & Ryall, K.L. (2014) Improving detection tools for emerald ash borer (Coleoptera: Buprestidae): comparison of multifunnel traps, prism traps, and lure types at varying population densities. Journal of Economic Entomology 107, 14961501.
DiGirolomo, M.F. & Dodds, K.J. (2014) Cerambycidae bycatch from Asian longhorned beetle survey traps placed in forested environs. Northeastern Naturalist 21, N28N34.
Estoup, A. & Guillemaud, T. (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Molecular Ecology 19, 41134130.
Etxebeste, I., Lencina, J.L. & Pajares, J. (2013) Saproxylic community, guild and species responses to varying pheromone components of a pine bark beetle. Bulletin of Entomological Research 103, 497510.
Fattorini, S. (2010) Effects of fire on tenebrionid communities of a Pinus pinea plantation: a case study in a Mediterranean site. Biodiversity and Conservation 19, 12371250.
Fraedrich, S.W., Harrington, T.C., Rabaglia, R.J., Ulyshen, M.D., Mayfield, A.E. III, Hanula, J.L., Eickwort, J.M. & Miller, D.R. (2008) A fungal symbiont of the redbay ambrosia beetle causes a lethal wilt in redbay and other Lauraceae in the southeastern United States. Plant Disease 92, 215224.
Garnas, J., Roux, J., Hurley, B., Slippers, B., Wingfield, M.J. (2016 a) Insects and diseases of Mediterranean forests: A South African perspective. pp. 397430 in Paine, T.D. & Lieutier, F. (Eds) Insects and Diseases of Mediterranean Forest Systems. Switzerland, Springer International Publishing.
Garnas, J., Auger-Rozenberg, M. & Roques, A., Bertelsmeier, C., Wingfield, M.J., Saccaggi, D.L., Roy, H.E. & Slippers, B. (2016 b) Complex patterns of global spread in invasive insects: eco-evolutionary and management consequences. Biological Invasions 18, 935952.
Gebeyehu, S. & Wingfield, M.J. (2003) Pine weevil Pissodes nemorensis: threat to South African pine plantations and options for control: review article. South African Journal of Science 99, 531.
Gray, B. (1968) Forest tree and timber insect pests in the Territory of Papua and New Guinea. Pacific Insects 10, 301323.
Goslee, S.C. & Urban, D.L. (2007) The ecodist package for dissimilarity-based analysis of ecological data. Journal of Statistical Software 22, 119.
Gotelli, N.J. & Colwell, R.K. (2011) Estimating species richness. pp. 3954 in Magurran, A.E. & McGill, B.J. (Eds) Biological Diversity: Frontiers in Measuring Biodiversity. New York, Oxford University Press.
Gunther, M.J. & New, T.R. (2003) Exotic pine plantations in Victoria, Australia: a threat to epigaeic beetle (Coleoptera) assemblages? Journal of Insect Conservation 7, 7384.
Haack, R.A. (2001) Intercepted Scolytidae (Coleoptera) at US ports of entry: 1985–2000. Integrated Pest Management Reviews 6, 253282.
Haack, R.A. & Rabaglia, R.J. (2013) Exotic bark and ambrosia beetles in the USA: potential and current invaders. pp. 4874 in Peña, J. (Ed.) Potential Invasive Pests of Agricultural Crops. Boston, MA, CAB International.
Hatten, T.D., Looney, C., Strange, J.P. & Bosque-Pérez, N.A. (2013) Bumble bee fauna of Palouse Prairie: survey of native bee pollinators in a fragmented ecosystem. Journal of Insect Science 13, 119.
Hsieh, T.C., Ma, K.H. & Chao, A. (2014) iNEXT: iNterpolation and EXTrapolation for species diversity. R package version 2.0. Available online at http://chao.stat.nthu.edu.tw/blog/software-download
Hulcr, J., and Dunn, R.R. (2011) The sudden emergence of pathogenicity in insect-fungus symbioses threatens naive forest ecosystems. Proceedings of the Royal Society B: Biological Sciences 278, 28662873.
Hurley, B.P., Slippers, B. & Wingfield, M.J. (2007) A comparison of control results for the alien invasive woodwasp, Sirex noctilio, in the Southern Hemisphere. Agricultural and Forest Entomology 9, 159171.
Hurley, B.P., Croft, P., Verleur, M., Wingfield, M.J. & Slippers, B. (2012) The control of the Sirex woodwasp in diverse environments: the South African experience. pp. 247264 in Slippers, B., de Groot, P. & Wingfield, M.J. (Eds) The Sirex Woodwasp and its Fungal Symbiont: Research and Management of a Worldwide Invasive Pest. Netherlands, Springer.
Hurley, B.P., Garnas, J. & Cooperb, M.F. (2015) Assessing trap and lure effectiveness for the monitoring of Sirex noctilio . Agricultural and Forest Entomology 17, 6470.
Hurley, B.P., Garnas, J., Wingfield, M.J., Branco, M., Richardson, D.M., Slippers, B. (2016) Increasing numbers and intercontinental spread of invasive insects on eucalypts. Biological Invasions 18, 921933.
Jactel, H., Brockerhoff, E. & Duelli, P. (2005) A test of the biodiversity-stability theory: meta-analysis of tree species diversity effects on insect pest infestations, and re-examination of responsible factors. pp. 235262 in Scherer-Lorenzen, M., Körner, C. & Schulze, E.D. (Eds) Forest Diversity and Function, Berlin Heidelberg, Springer.
Kalshoven, L.G.E. (1964) The occurrence of Xyleborus perforans (Woll.) and X. similis in Java (Coleoptera, Scolytidae). Beaufortia 11, 131142.
Keane, R.M. & Crawley, M.J. (2002) Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution 17, 164170.
Kelsey, R.G. & Joseph, G. (1997) Ambrosia beetle host selection among logs of douglas fir, western hemlock, and western red cedar with different ethanol and α-pinene concentrations. Journal of Chemical Ecology 23, 10351051.
Kirkendall, L.R. (1983) The evolution of mating systems in bark and ambrosia beetles (Coleoptera: Scolytidae and Platypodidae). Zoological Journal of the Linnean Society 77, 293352.
Kromp, B. (1999) Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agriculture, Ecosystems & Environment 74, 187228.
Lantschner, M.V., Villacide, J.M., Garnas, J.R., Croft, P., Carnegie, A.J., Liebhold, A.M. & Corley, J.C. (2014) Temperature explains variable spread rates of the invasive woodwasp Sirex noctilio in the Southern Hemisphere. Biological Invasions 16, 329339.
Lord, N.P., Nearns, E.H. & Miller, K.B. (2011) Ironclad ID: Tool for Diagnosing Ironclad and Cylindrical Bark Beetles (Coleoptera: Zopheridae) of North America North of Mexico. USA, The University of New Mexico and Center for Plant Health Science and Technology, USDA, APHIS, PPQ. Available at: http://coleopterasystematics.com/ironcladid/index.html
Maleque, M.A., Maeto, K. & Ishii, H.T. (2009) Arthropods as bioindicators of sustainable forest management, with a focus on plantation forests. Applied Entomology and Zoology 44, 111.
Martin, A., Etxebeste, I., Pérez, G., Álvarez, G., Sánchez, E. & Pajares, J. (2013) Modified pheromone traps help reduce bycatch of bark-beetle natural enemies. Agricultural and Forest Entomology 15, 8697.
Miller, D.R. & Rabaglia, R.J. (2009) Ethanol and (−)-α-pinene: Attractant kairomones for bark and ambrosia beetles in the southeastern US. Journal of Chemical Ecology 35, 435448.
Oksanen, J., Blanchet, G.F., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H. & Wagner, H. (2015) vegan: Community Ecology Package. R package version 2.3–0. Available online at http://CRAN.R-project.org/package=vegan
Pawson, S.M., Brockerhoff, E.G., Meenken, E.D. & Didham, R.K. (2008) Non-native plantation forests as alternative habitat for native forest beetles in a heavily modified landscape. Biodiversity and Conservation 17, 11271148.
Perez-De La Cruz, M., Equihua-Martinez, A., Romero-Napoles, J., Sanchez-Soto, S. & Garcia-Lopez, E. (2009) Diversity, dynamic population and host plants of bark and ambrosia beetles (Coleoptera: Curculionidae) associated to the cocoa agroecosystem in Tabasco, Mexico. Revista Mexicana de Biodiversidad 80, 779791.
Prinsloo, G. & Uys, V. (Eds.) (2014) Insects of Cultivated Plants and Natural Pastures in Southern Africa. Pretoria, Entomological Society of Southern Africa.
R Core Team (2015) R: A Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing. Available online at http://www.R-project.org/
Roux, J., Hurley, B.P. & Wingfield, M.J. (2012) Diseases and pests of eucalypts, pines and wattle. pp. 303336 in Bredenkamp, B.V. & Upfold, S.J. (Eds) South African Forestry Handbook. 5th edn. South Africa, South African Institute for Forestry.
Ryan, K., de Groot, P. & Smith, S.M. (2012) Evidence of interaction between Sirex noctilio and other species inhabiting the bole of Pinus . Agricultural and Forest Entomology 14, 187195.
Schlyter, F. (1992) Sampling range, attraction range, and effective attraction radius: estimates of trap efficiency and communication distance in coleopteran pheromone and host attractant systems. Journal of Applied Entomology 114, 439454.
Scholtz, C.H. & Holm, E. (2012) Insects of Southern Africa. 2nd edn. Pretoria, South Africa, Butterworths.
Shepherd, W.P., Sullivan, B.T., Goyer, R.A. & Klepzig, K.D. (2005) Electrophysiological and olfactometer responses of two histerid predators to three pine bark beetle pheromones. Journal of Chemical Ecology 31, 11011110.
Skvarla, M.J. & Holland, J.D. (2011) Nontarget insects caught on emerald ash borer purple monitoring traps in western Pennsylvania. Northern Journal of Applied Forestry 28, 219221.
Slippers, B., Hurley, B.P., Wingfield, M.J. (2015) Sirex woodwasp: a model for evolving management paradigms of invasive forest pests. Annual Review of Entomology 60, 601619.
Spears, L.R. & Ramirez, R.A. (2015) Learning to love leftovers. American Entomologist 61, 168173.
Stone, C. (1993) Survey of arthropods from billets of Pinus following infestation by Ips grandicollis (Eichhoff) Coleoptera: Scolytidae) in Northeaster New South Wales. Australian Journal of Entomology 32, 289296.
Stone, C., Goodyer, G., Sims, K., Penman, T. and Carnegie, A. (2010) Beetle assemblages captured using static panel traps within New South Wales pine plantations. Australian Journal of Entomology 49, 304316.
Taerum, S.J., Duong, T.A., De Beer, Z.W., Gillette, N., Sun, J.H., Owen, D.R. & Wingfield, M.J. (2013) Large shift in symbiont assemblage in the invasive red turpentine beetle. PLoS ONE 8, e78126.
Thomas, D.B. (2003) Nontarget insects captured in fruit fly (Diptera: Tephritidae) surveillance traps. Journal of Economic Entomology 96, 17321737.
Thomas, M.C. (2002) Family 81. Passandridae Erichson 1845. pp. 327328 in Arnett, R.H. Jr., Thomas, M.C., Skelley, P.E. and Frank, J.H. (Eds) American Beetles, Volume 2. Polyphaga: Scarabaeoidea through Curculionoidea. Boca Raton, CRC Press.
Tribe, G.D. (1990) Phenology of Pinus radiata log colonization and reproduction by the European bark beetle Orthotomicus erosus (Wollaston)(Coleoptera: Scolytidae) in the south-western Cape Province. Journal of the Entomological Society of Southern Africa 53, 117126.
Tribe, G.D. (1992) Colonisation sites on Pinus radiata logs of the bark beetles, Orthotomicus erosus, Hylastes angustatus and Hylurgus ligniperda (Coleoptera: Scolytidae). Journal of the Entomological Society of Southern Africa 55, 7784.
Tribe, G.D. (1995) The woodwasp Sirex noctilio Fabricius (Hymenoptera: Siricidae), a pest of Pinus species, now established in South Africa. African Entomology, 3, 215217.
Tribe, G.D. & Cillié, J.J. (2004) The spread of Sirex noctilio Fabricius (Hymenoptera: Siricidae) in South African pine plantations and the introduction and establishment of its biological control agents. African Entomology 12, 9.
Tribe, G.D. & Kfir, R. (2001) The establishment of Dendrosoter caenopachoides (Hymenoptera: Braconidae) introduced into South Africa for the biological control of Orthotomicus erosus (Coleoptera: Scolytidae), with additional notes on D. sp. nr. labdacus . African Entomology 9, 195198.
Turchin, P. & Odendaal, F.J. (1996) Measuring the effective sampling area of a pheromone trap for monitoring population density of southern pine beetle (Coleoptera: Scolytidae). Environmental Entomology 25, 582588.
Turchin, P. & Thoeny, W.T. (1993) Quantifying dispersal of southern pine beetles with mark-recapture experiments and a diffusion model. Ecological Applications 3, 187198.
UK CAB International (1973) Xyleborus Perforans. [Distribution map]. Distribution Maps of Plant Pests, December. Wallingford, UK, CAB International, Map 320.
Vandermeer, J., van Noordwijk, M., Anderson, J., Ong, C. & Perfecto, I. (1998) Global change and multi-species agroecosystems: concepts and issues. Agriculture, Ecosystems & Environment 67, 122.
Vergara, C.H. & Badano, E.I. (2009) Pollinator diversity increases fruit production in Mexican coffee plantations: the importance of rustic management systems. Agriculture, Ecosystems & Environment 129, 117123.
Williamson, M. & Fitter, A. (1996) The varying success of invaders. Ecology 77, 16611666.
Wingfield, M.J., Garnas, J., Hajek, A., Hurley, B.P., De Beer, Z.W. & Taerum, S.J. (2016) Novel and co-evolved associations between insects and microorganisms as drivers of forest pestilence. Biological Invasions 18, 10451056.
Wood, S.L. & Bright, D.E. (1992) A catalog of Scolytidae and Platypodidae (Coleoptera), part 2: taxonomic index volume A. Great Basin Naturalist Memoirs 13, 1833.
Wylie, F.R., Peters, B., DeBaar, M., King, J. & Fitzgerald, C. (1999) Managing attack by bark and ambrosia beetles (Coleoptera: Scolytidae) in fire-damaged Pinus plantations and salvaged logs in Queensland, Australia. Australian Forestry 62, 148153.
Yamashiro, T. & Myazaki, I. (1985) Principal pests and diseases of mango-Mangifera indica L.-in the State of São Paulo and updated control methods. Biológico 51, 4150.

Keywords

Type Description Title
PDF
Supplementary materials

Olivier-Espejel supplementary material
Supplementary Figures and Table

 PDF (753 KB)
753 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed