Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-20T22:16:02.578Z Has data issue: false hasContentIssue false

Analyzing haplodiploid inheritance of insecticide resistance in whitefly biotypes

Published online by Cambridge University Press:  21 January 2009

D.W. Crowder*
Affiliation:
Department of Entomology, 410 Forbes Building, University of Arizona, Tucson, AZ, 85721, USA
A.R. Horowitz
Affiliation:
Department of Entomology, ARO, Gilat Research Center, M.P. Negev, Israel
B.E. Tabashnik
Affiliation:
Department of Entomology, 410 Forbes Building, University of Arizona, Tucson, AZ, 85721, USA
T.J. Dennehy
Affiliation:
Department of Entomology, 410 Forbes Building, University of Arizona, Tucson, AZ, 85721, USA
I. Denholm
Affiliation:
Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
K. Gorman
Affiliation:
Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
Y. Carrière
Affiliation:
Department of Entomology, 410 Forbes Building, University of Arizona, Tucson, AZ, 85721, USA
*
*Author for correspondence Fax: 520-621-1150 E-mail: dcrowder@ag.arizona.edu

Abstract

We developed new methods for analyzing inheritance of insecticide resistance in haplodiploid arthropods and applied them to elucidate resistance of the whitefly Bemisia tabaci (Gennadius) to an insect growth regulator, pyriproxyfen. Two invasive biotypes of this devastating crop pest, the B biotype in Arizona and the Q biotype in Israel, have evolved resistance to pyriproxyfen. Here, we incorporated data from laboratory bioassays and crossing procedures exploiting haplodiploidy into statistical and analytical models to estimate the number of loci affecting pyriproxyfen resistance in strains of both biotypes. In tests with models of one to ten loci, the best fit between expected and observed mortality occurred with a two-locus model for the B biotype strain (QC-02) and for one- and two-locus models for the Q biotype strain (Pyri-R). The estimated minimum number of loci affecting resistance was 1.6 for the B biotype strain and 1.0 for the Q biotype strain. The methods used here can be applied to insecticide resistance and other traits in haplodiploid arthropods.

Type
Research Paper
Copyright
Copyright © 2009 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. (1925) A method for computing the effectiveness of an insecticide. Journal of Economic Entomology 18, 265267.CrossRefGoogle Scholar
Alves, A.P., Spencer, T.A., Tabashnik, B.E. & Siegfried, B.D. (2006) Inheritance of resistance to the Cry1Ab Bacillus thuringiensis toxin in Ostrinia nubilalis (Lepidoptera: Crambidae). Journal of Economic Entomology 99, 494501.CrossRefGoogle Scholar
Brown, E.J., Cave, F.E. & Hoy, M.A. (1991) Mode of inheritance of azinphosmethyl resistance in a laboratory-selected strain of Trioxys pallidus. Entomologia Experimentalis et Applicata 63, 229236.CrossRefGoogle Scholar
Brown, J.K., Frohlich, D.R. & Rosell, R.C. (1995) The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex? Annual Review of Entomology 40, 511534.CrossRefGoogle Scholar
Bull, J.J. (1983) Evolution of Sex Determining Mechanisms. 316 pp. Menlo Park, Benjamin/Cummings.Google Scholar
Byrne, D.N. & Bellows, T.S. (1991) Whitefly biology. Annual Review of Entomology 36, 431457.CrossRefGoogle Scholar
Byrne, F.J. & Devonshire, A.L. (1996) Biochemical evidence of haplodiploidy in the whitefly Bemisia tabaci. Biochemical Genetics 34, 93107.CrossRefGoogle ScholarPubMed
Carrière, Y. (2003) Haplodiploidy, sex, and the evolution of pesticide resistance. Journal of Economic Entomology 96, 16261640.CrossRefGoogle ScholarPubMed
Costa, H.S., Brown, J.K., Sivasupramaniam, S. & Bird, J. (1993) Regional distribution, insecticide resistance, and reciprocal crosses between the A and B biotypes of Bemisia tabaci. Insect Science and its Application 14, 255266.Google Scholar
Crowder, D.W., Carrière, Y., Tabashnik, B.E., Ellsworth, P.C. & Dennehy, T.J. (2006) Modeling evolution of resistance to pyriproxyfen by the sweetpotato whitefly (Hemiptera: Aleyrodidae). Journal of Economic Entomology 99, 13961406.CrossRefGoogle ScholarPubMed
Crowder, D.W., Dennehy, T.J., Ellers-Kirk, C., Yafuso, C., Ellsworth, P.C., Tabashnik, B.E. & Carrière, Y. (2007) Field evaluation of resistance to pyriproxyfen in Bemisia tabaci (B biotype). Journal of Economic Entomology 100, 16501656.CrossRefGoogle ScholarPubMed
Crowder, D.W., Ellers-Kirk, C., Yafuso, C., Dennehy, T.J., Degain, B.A., Harpold, V.S., Tabashnik, B.E. & Carrière, Y. (2008) Inheritance of resistance to pyriproxyfen in Bemisia tabaci (Hemiptera: Aleyrodidae) males and females (B biotype). Journal of Economic Entomology 101, 927932.CrossRefGoogle ScholarPubMed
De Barro, P.J. & Hart, P.J. (2000) Mating interactions between two biotypes of the whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) in Australia. Bulletin of Entomological Research 90, 103112.CrossRefGoogle ScholarPubMed
Denholm, I. & Rowland, M.W. (1992) Tactics for managing pesticide resistance in arthropods – theory and practice. Annual Review of Entomology 37, 91112.CrossRefGoogle ScholarPubMed
Denholm, I., Cahill, M., Dennehy, T.J. & Horowitz, A.R. (1998) Challenges with managing insecticide resistance in agricultural pests, exemplified by the whitefly Bemisia tabaci. Philosophical Transactions of the Royal Society of London Series B 353, 17571767.CrossRefGoogle Scholar
Dennehy, T.J., Degain, B.A., Harpold, V.S. & Brink, S.A. (2004) Whitefly resistance to insecticides in Arizona: 2002 and 2003 results. pp. 19261938 in Proceedings of the Beltwide Cotton Conference. Memphis, National Cotton Council, 5–9th January 2004, San Antonio TX.Google Scholar
Dennehy, T.J., Degain, B.A., Harpold, V.S., Brown, J.K., Morin, S., Fabrick, J.A. & Nichols, R.L. (2005) New challenges to management of whitefly resistance to insecticides in Arizona. The University of Arizona Cooperative Extension Vegetable Report. http://ag.arizona.edu/pubs/crops/az1382/az1382_2.pdf.Google Scholar
Goka, K. (1998) Mode of inheritance of resistance to three new acaricides in the Kanzawa spider mite, Tetranychus kanzawai Kishida (Acari: Tetranychidae). Experimental and Applied Acarology 22, 699708.CrossRefGoogle Scholar
Heimpel, G.E. & de Boer, J.G. (2008) Sex determination in the hymenoptera. Annual Review of Entomology 53, 209230.CrossRefGoogle ScholarPubMed
Herron, G.A. & Rophail, J. (1993) Genetics of hexythiazox resistance in two spotted spider mite, Tetranychus urticae Koch. Experimental and Applied Acarology 17, 423431.CrossRefGoogle Scholar
Horowitz, A.R. & Ishaaya, I. (1996) Chemical control of Bemisia – management and application. pp. 537556in Gerling, D. & Mayer, R.T. (Eds) Bemisia 1995: Taxonomy, Biology, Damage, Control and Management. Andover, MA, Intercept.Google Scholar
Horowitz, A.R., Mendelson, Z., Cahill, M., Denholm, I. & Ishaaya, I. (1999) Managing resistance to the insect growth regulator, pyriproxyfen, in Bemisia tabaci. Pesticide Science 55, 272276.3.0.CO;2-Y>CrossRefGoogle Scholar
Horowitz, A.R., Kontsedalov, S., Denholm, I. & Ishaaya, I. (2002) Dynamics of insecticide resistance in Bemisia tabaci: a case study with an insect growth regulator. Pest Management Science 58, 10961100.CrossRefGoogle ScholarPubMed
Horowitz, A.R., Gorman, K., Ross, G. & Denholm, I. (2003) Inheritance of pyriproxyfen resistance in the whitefly, Bemisia tabaci (Q biotype). Archives of Insect Biochemistry and Physiology 54, 177186.CrossRefGoogle ScholarPubMed
Horowitz, A.R., Kontsedalov, S., Khasdan, V. & Ishaaya, I. (2005) Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Archives of Insect Biochemistry and Physiology 58, 216225.CrossRefGoogle ScholarPubMed
Ishaaya, I. & Horowitz, A.R. (1992) Novel phenoxy juvenile hormone analog (pyriproxyfen) suppresses embryogenesis and adult emergence of sweetpotato whitefly (Homoptera, Aleyrodidae). Journal of Economic Entomology 85, 21132117.CrossRefGoogle Scholar
Jones, C.D. (2001) Extension of the Castle-Wright effective factor estimator to sex linkage and haplodiploidy. Journal of Heredity 92, 274276.CrossRefGoogle ScholarPubMed
Lande, R. (1981) The minimum number of genes contributing to quantitative variation between and within populations. Genetics 99, 541553.CrossRefGoogle ScholarPubMed
Li, A.Y., Dennehy, T.J. & Nichols, R.L. (2003) Baseline susceptibility and development of resistance to pyriproxyfen in Bemisia argentifolii (Homoptera: Aleyrodidae) in Arizona. Journal of Economic Entomology 96, 13071314.CrossRefGoogle ScholarPubMed
Omer, A.D., Tabashnik, B.E. & Johnson, M.W. (1995) Inheritance of dicrotophos resistance in greenhouse whitefly. Entomologica Experimentalis et Applicata 77, 177181.CrossRefGoogle Scholar
Onstad, D.W. (2007) Insect Resistance Management: Biology, Economics, and Prediction. 305 pp. New York, Elsevier Science.Google Scholar
Palumbo, J.C., Horowitz, A.R. & Prabhaker, N. (2001) Insecticidal control and resistance management for Bemisia tabaci. Crop Protection 20, 739765.CrossRefGoogle Scholar
Perring, T.M. (2001) The Bemisia tabaci species complex. Crop Protection 20, 725737.CrossRefGoogle Scholar
Preisler, H.K., Hoy, M.A. & Robertson, J.A. (1990) Statistical analysis of modes of inheritance for pesticide resistance. Journal of Economic Entomology 83, 16491655.CrossRefGoogle Scholar
SAS Institute (2002) SAS, Ver. 8. 2nd edn.SAS Institute, Cary, NC, USA.Google Scholar
Sokal, R.R. & Rohlf, F.J. (1995) Biometry. 887 pp. New York, W.H. Freeman & Company.Google Scholar
Tabashnik, B.E. (1991) Determining the mode of inheritance of pesticide resistance with backcross experiments. Journal of Economic Entomology 84, 703712.CrossRefGoogle ScholarPubMed
Tabashnik, B.E., Schwartz, J.M., Finson, N. & Johnson, M.W. (1992) Inheritance of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology 85, 10461055.CrossRefGoogle Scholar
Tabashnik, B.E., Gassmann, A.J., Crowder, D.W. & Carrière, Y. (2008) Insect resistance to Bt crops: evidence versus theory. Nature Biotechnology 26, 199202.CrossRefGoogle ScholarPubMed
Tan, W.-J., Riley, D.R. & Wolfenbarger, D.A. (1996) Quantification and genetic analysis of bifenthrin resistance in the silverleaf whitefly. Southwestern Entomologist 21, 265275.Google Scholar
Van Leeuwen, T., Stillatus, V. & Tirry, L. (2004) Genetic analysis and cross-resistance spectrum of a laboratory-selected and chlorfenapyr resistant strain of two-spotted spider mite (Acari: Tetranychidae). Experimental and Applied Acarology 32, 249261.CrossRefGoogle Scholar