Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-sbc4w Total loading time: 0.3 Render date: 2021-02-26T11:55:51.531Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Modelling population dynamics of Orius laevigatus and O. albidipennis (Hemiptera: Anthocoridae) to optimize their use as biological control agents of Frankliniella occidentalis (Thysanoptera: Thripidae)

Published online by Cambridge University Press:  09 March 2007

J.A. Sanchez
Affiliation:
Departamento de Protección Vegetal, Centro de Investigación y Desarrollo Agroalimentario, c/Mayor, s/n, 30150 La Alberca, Murcia, Spain
A. Lacasa
Affiliation:
Departamento de Protección Vegetal, Centro de Investigación y Desarrollo Agroalimentario, c/Mayor, s/n, 30150 La Alberca, Murcia, Spain
Corresponding
E-mail address:

Abstract

Orius laevigatus (Fieber) and O. albidipennis (Reuter) play an important role in the control of Frankliniella occidentalis (Pergande) in crops and natural vegetation in the Mediterranean area. The biological parameters of the two anthocorids were studied and modelled in relation to temperature to optimize their use in thrips control programmes. Development times and reproductive parameters of O. laevigatus and O. albidipennis were determined at 20, 25, 30 and 35°C. Pre-imaginal development times ranged from 34.6 and 37.2 days at 20°C to 12.3 and 10.2 days at 35°C in O. laevigatus and O. albidipennis, respectively. The lower thermal development threshold was significantly higher for O. albidipennis (14.2 ± 0.9°C) than for O. laevigatus(11.3 ± 0.7°C). No significant differences in fecundities between the two anthocorids were observed at 20, 25 and 30°C. At 35°C, O. albidipennishad a significantly higher fecundity than O. laevigatus. Non-linear models were used to explain reproduction and female survivorship in relation to temperature. The upper reproductive thresholds were estimated at 40.9 ± 0.3 and 35.5 ± 0.1°C for O. albidipennis and O. laevigatus, respectively. The different optimum temperatures may explain, at least in part, the different distributions of the two species in the Palaeartic region and their population dynamics in greenhouses and natural vegetation in the south of Spain. The estimation of rmas a function of temperature showed high variability between years. Three release rates of 0.75–0.25 Orius per plant are recommended from early March to mid May to deal with thrips outbreaks in pepper crops.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2002

Access options

Get access to the full version of this content by using one of the access options below.

References

Alauzet, C., Dargagnon, D. & Malausa, J.C. (1994) Bionomics of a polyphagous predator: Orius laevigatus (Het.: Anthocoridae). Entomophaga 39, 3340.CrossRefGoogle Scholar
Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P. & Mackauer, M. (1974) Temperature requirements of some aphids and their parasites. Journal of Applied Ecology 11, 431438.CrossRefGoogle Scholar
Carnero, A., Peña, M.A., Perez-Padron, F., Garrido, C. & Hernandez, M. (1993) Bionomics of Orius albidipennis and Orius limbatus. Bulletin OILB srop 16, 2730.Google Scholar
Chyzik, R., Klein, M. & Ben-Dov, M. (1995) Overwintering biology of the predatory bug Orius albidipennis (Hemiptera: Anthocoridae) in Israel. Biocontrol Science and Technology 5, 287296.CrossRefGoogle Scholar
Cocuzza, G.E., De Clercq, P., Van De Veire, M., De Cock, A., Degheele, D. & Vacante, V. (1997) Reproduction of Orius laevigatus and Orius albidipennis on pollen and Ephestia kuehniella eggs. Entomologia Experimentalis et Applicata 82, 101104.CrossRefGoogle Scholar
Cocuzza, G.E., Clercq, P., Lizzio, S., Van De Veire, M., Tirry, L., Degheele, D. & Vacante, V. (1997) Life tables and predation activity of Orius laevigatus and O. albidipennis at three constant temperatures. Entomologia Experimentalis et Applicata 85, 189198.CrossRefGoogle Scholar
Gillespie, D.R. & Quiring, D.J.M. (1993) Extending the seasonal limits on biological control. Bulletin OILB srop 16, 43–15.Google Scholar
Krebs, J.C. (1985) Ecología. Madrid, Pirámide.Google Scholar
Lacasa, A., Contreras, J., Sanchez, J.A., Lorca, M. & Garcia, F. (1996) Ecology and natural enemies of Frankliniella occidentalis (Pergande, 1985) in south-east Spain. Folia Entomologica Hungarica 57, 6774.Google Scholar
Lacasa, A. & Llorens, J.M. (1998) Trips y su control biológico (II). Alicante, Pisa Ediciones.Google Scholar
Logan, J.A., Wollkind, D.J., Hoyt, S.C. & Tanihoshi, L.K. (1976) An analytic model for description of temperature dependent rate phenomena in arthropods. Environmental Entomology 5, 11331140.CrossRefGoogle Scholar
Mason, J.L. & Mack, T.P. (1984) Influence of temperature on oviposition and adult female longevity for the soybean looper, Pseudoplusia includens (Walker) (Lepidoptera: Noctuidae). Environmental Entomology 13, 379383.CrossRefGoogle Scholar
Pericart, J. (1972) Hémiptères. Anthocoridae, Cimicidae et Microphysidae de l'Ouest-Paléarctique. 6th edn. Paris, Masson et Cie Éditeurs.Google Scholar
Ruberson, J.R., Bush, L. & Kring, T.J. (1991) Photoperiodic effect on diapause induction and development in the predator Orius insidiosus (Heteroptera: Anthocoridae). Environmental Entomology 20, 786789.CrossRefGoogle Scholar
Sakimura, K. (1962) Frankliniella occidentalis (Thysanoptera: Thripidae) a vector of the Tomato Spotted Wilt Virus, with special reference to colour forms. Annals of the Entomological Society of America 55, 387389.CrossRefGoogle Scholar
Sanchez, J.A. (1998) Bases para el establecimiento de un programa de control integrado de Frankliniella occidentalis (Pergande) en pimiento en invernadero en el Sureste de España. Influencia de la temperatura sobre el potencial biótico de Orius laevigatus (Fieber) y Orius albidipennis (Reuter). Thesis, ETSIA Agrónomos, Universidad Politécnica de Valencia.Google Scholar
Sanchez, J.A., Garcia, F., Lacasa, A., Gutierrez, L., Oncina, M., Contreras, J. & Gomez, J. (1997) Response of the anthocorids Orius laevigatus and Orius albidipennis and the phytoseid Amblyseius cucumeris for the control of Frankliniella occidentalis in commercial crops of sweet peppers in Murcia (Spain). Bulletin OILB srop 20, 177185.Google Scholar
Sanchez, J.A., Gutierrez, L., Lacasa, A. & Contreras, J. (1998) Comparación de procedimientos de muestreo de Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) y Orius spp. (Hemiptera: Anthocoridae). Boletín de Sanidad Vegetal Plagas 24, 183192.Google Scholar
Sanchez, J.A., Alcazar, A., Llamas, A., Lacasa, A. & Bielza, P. (2000) Integrated pest management strategies in sweet pepper plastic houses in the Southeast of Spain. Bulletin OILB srop 23, 2130.Google Scholar
Shipp, J.L., Zariffa, N. & Ferguson, G. (1992) Spatial patterns of sampling methods for Orius spp. (Hemiptera: Anthocoridae) on greenhouse sweet pepper. Canadian Entomologist 124, 887894.CrossRefGoogle Scholar
Tavella, L., Alma, A. & Arzone, A. (1991) Research on Orius laevigatus (Fieb.) a predator of Frankliniella occidentalis (Perg.) in greenhouses. A preliminary note. Bulletin IOBC srop 14, 6572.Google Scholar
Tommasini, M.G. & Benuzzi, M. (1996) Influence of temperature on the development time and adult activity of Orius laevigatus. Bulletin OILB srop 19, 179180.Google Scholar
Tommasini, M.G. & Nicoli, G. (1996) Evaluation of Orius spp. as biological control agents of thrips pests. Further experiments on the existence of diapause in Orius laevigatus. Bulletin OILB srop 19, 183186.Google Scholar
Tsai, J.H. & Wang, K. (1996) Development and reproduction of Bemisia argentifolii (Homoptera: Aleyrodidae) on five host plants. Population Ecology 25, 810816.Google Scholar
Vacante, V. & Tropea-Garzia, G.T. (1993) Prime osservazioni sulla risposta di Orius laevigatus (Fieber) nel controllo di Frankliniella occidentalis (Pergande) su peperone in serra fredda. Colture Protette 1, 3336.Google Scholar
Vacante, V., Cocuzza, G.E., Clercq, P., Van De, Veire M. & Tirry, L. (1997) Development and survival of Orius albidipennis and O. laevigatus (Het.: Anthocoridae) on various diets. Entomophaga 42, 493498.CrossRefGoogle Scholar
Van den Meiracker, R.A.F. (1994) Induction and termination of diapause in Orius predatory bugs. Entomologia Experimentalis et Applicata 73, 127137.CrossRefGoogle Scholar
Wijkamp, I., Almarza, N., Goldbach, R. & Peters, D. (1995) Distinct levels of specificity in thrips transmission of Tospovirus. Phytopathology 85, 10691074.CrossRefGoogle Scholar
Wilkinson, L., Hill, M., Welna, J.P. & Birkenbeuel, G.K. (1992) SYSTAT for Windows. Version 5. SYSTAT Inc.Google Scholar
Zaki, F.N. (1989) Rearing of two predators, Orius albidipennis (Reut.) and Orius laevigatus (Fieber) (Hem., Anthocoridae) on some insect larvae. Journal of Applied Entomology 107, 107109.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 67 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Modelling population dynamics of Orius laevigatus and O. albidipennis (Hemiptera: Anthocoridae) to optimize their use as biological control agents of Frankliniella occidentalis (Thysanoptera: Thripidae)
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Modelling population dynamics of Orius laevigatus and O. albidipennis (Hemiptera: Anthocoridae) to optimize their use as biological control agents of Frankliniella occidentalis (Thysanoptera: Thripidae)
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Modelling population dynamics of Orius laevigatus and O. albidipennis (Hemiptera: Anthocoridae) to optimize their use as biological control agents of Frankliniella occidentalis (Thysanoptera: Thripidae)
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *