Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-vzs5b Total loading time: 29.531 Render date: 2021-04-18T13:42:15.608Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Genetic structure and molecular variability of Spodoptera frugiperda (Lepidoptera: Noctuidae) collected in maize and cotton fields in Brazil

Published online by Cambridge University Press:  24 May 2007

S. Martinelli
Affiliation:
Departamento de Entomologia, Fitopatologia e Zoologia Agrícola, Universidade de São Paulo/ESALQ, Av. Pádua Dias 11, 13418-900, Piracicaba, SP, Brazil
P.L. Clark
Affiliation:
Insect Genetics Laboratory, Department of Entomology, University of Nebraska, Lincoln, Nebraska, USA
M.I. Zucchi
Affiliation:
Instituto Agronômico de Campinas, Campinas, SP, Brazil
M.C. Silva-Filho
Affiliation:
Departamento de Genética, ESALQ-USP, Piracicaba, SP, Brazil
J.E. Foster
Affiliation:
Insect Genetics Laboratory, Department of Entomology, University of Nebraska, Lincoln, Nebraska, USA
C. Omoto
Affiliation:
Departamento de Entomologia, Fitopatologia e Zoologia Agrícola, Universidade de São Paulo/ESALQ, Av. Pádua Dias 11, 13418-900, Piracicaba, SP, Brazil
Corresponding

Abstract

The purpose of this research was to evaluate the genetic similarity and structure of the fall armyworm, Spodoptera frugiperda (J.E. Smith), populations associated with maize and cotton crops in Brazil using amplified fragment length polymorphisms. Mean genetic similarity among populations was 0.45. The unweighted pair group method with arithmetic mean analysis dendrograms did not separate populations of S. frugiperda into clusters related to the host plant in which the insects were collected. No genetic variation was observed among maize and cotton populations of S. frugiperda, suggesting that the same populations are injuring both crops in Brazil. This research validates the need for stewardship of crop-protection methods for managing S. frugiperda to reduce the incidence of pesticide resistance, due to the spatial and temporal overlapping of maize and cotton crops in some regions in Brazil.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

Alerstam, T., Henderstrom, A. & Akesson, S. (2003) Long-distance migration: evolution and determinants. Oikos 103, 247260.CrossRefGoogle Scholar
Black, W.C., & Duteau, N.M. (1997) RAPD–PCR and SSCP analysis for insect population genetic studies. pp. 361373in Crampton, J.M., Beard, C.B. & Louis, C. (Eds) The molecular biology of insect disease vectors: a methods manual. London, Chapman & Hall.CrossRefGoogle Scholar
Bohonak, A.J., Davies, N., Roderick, G.K. & Villablanca, F.X. (1998) Is population genetic mired on the past? Trends in Ecology and Evolution 13, 360.CrossRefGoogle ScholarPubMed
Bossart, J.L. & Prowell, D.P. (1998a) Genetic estimates of population structure and gene flow: limitations, lesson and new directions. Trends in Ecology and Evolution 13, 202206.CrossRefGoogle Scholar
Bossart, J.L. & Prowell, D.P. (1998b) Reply from J.L. Bossart and D. Pashley Prowell. Trends in Ecology and Evolution 13, 360.CrossRefGoogle Scholar
Busato, G.R., Grutzmacher, A.D., Garcia, M.S., Giolo, F.P. & Martin, A.F. (2002) Consumo e utilização de alimento por Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) originária de diferentes regiões do Rio Grande do Sul, nas culturas do milho e arroz irrigado. Neotropical Entomology 31, 525529.CrossRefGoogle Scholar
Busato, G.R., Grutzmacher, A.D., Oliveira, A.C., Vieira, E.A., Zimmer, P.D., Kopp, M.M., Bandeira, J.M. & Magalhães, T.R. (2004) Análise da estrutura e diversidade molecular de populações de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) associadas às culturas do milho e arroz no Rio Grande do Sul. Neotropical Entomology 33, 709716.CrossRefGoogle Scholar
Caprio, M.A. & Tabashnik, B.E. (1992) Gene flow accelerates local adaptation among finite populations: simulating the evolution of insecticide resistance. Journal of Economic Entomology 85, 611620.CrossRefGoogle Scholar
Coelho, A.S.G. (2001) BOOD-P Avaliação de dendogramas baseados em estimativas de distâncias/similaridades genéticas através do procedimento de bootstrap, Versão 3.0. Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Goias, Goiânia, GO.Google Scholar
Diez-Rodriguez, G.I. & Omoto, C. (2001) Herança da resistência de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) à lambda-cialotrina. Neotropical Entomology 30, 311316.CrossRefGoogle Scholar
Dobzhansky, T. (1951) Genetics and the origin of species. 3rd edn. New York, Columbia University Press.Google Scholar
Excoffier, L., Smouse, P.E. & Quattro, J.M. (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479491.Google ScholarPubMed
Figueroa, C.C., Loyayza-Muro, R. & Niemeyer, H.M. (2002) Temporal variation of RAPD–PCR phenotype composition of the grain aphid Sitobion avenae (Hemiptera: Aphididae) on wheat: the role of hydroxamic acids. Bulletin of Entomological Research 91, 148156.Google Scholar
Fuentes-Contreras, E., Figueroa, C.C., Reyes, M., Briones, L.M. & Niemeyer, H.M. (2004) Genetic diversity and insecticide resistance of Myzuz persicae (Hemiptera: Aphididae) populations from tobacco in Chile: evidence for the existence of a single predominant clone. Bulletin of Entomological Research 94, 1118.CrossRefGoogle ScholarPubMed
Georghiou, G.P. & Taylor, C.E. (1977a) Genetic and biological influences in the evolution of insecticide resistance. Journal of Economic Entomology 70, 319323.CrossRefGoogle ScholarPubMed
Georghiou, G.P. & Taylor, C.E. (1977b) Operational influences in the evolution of insecticide resistance. Journal of Economic Entomology 70, 653658.CrossRefGoogle ScholarPubMed
Johnson, S.J. (1988) Migration and life history strategy of fall armyworm, Spodoptera frugiperda, in the Western Hemisphere. Insect Science and Its Application 8, 543549.Google Scholar
Labbe, P., Lenormand, T. & Raymond, M. (2005) On the world wide spread of an insect resistance gene: a role for local selection. Journal of Evolutionary Biology, on line publication 23 May 2005.CrossRefGoogle Scholar
Levy, H.C., Garcia-Maruniak, A. & Maruniak, J.E. (2002) Strain identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) insects and cell line: PCR–RFLP of cytochrome oxidase c subunit I gene. Florida Entomologist 85, 186190.CrossRefGoogle Scholar
Lewter, J.A., Szalanski, A.L., Nagoshi, R.N., Meagher, R.L., Owens, C.B. & Luttrell, R.G. (2006) Genetic variation within and between strains of the fall armyworm, Spodoptera frugiperda, (Lepidoptera: Noctuidae). Annals of the Entomological Society of America 89, 6368.Google Scholar
Manel, S., Schwarz, M.K., Luikart, G. & Taberlet, P. (2003) Landscape genetics: combining landscape ecology and populations genetics. Trends in Ecology and Evolution 18, 189197.CrossRefGoogle Scholar
Mantel, N. (1967) The detection of disease clustering and a generalized regression approach. Cancer Research 27, 209220.Google Scholar
Martinelli, S., Montrazi, R.B., Zucchi, M.I., Silva-Filho, M.C. & Omoto, C. (2006) Molecular variability of Spodoptera frugiperda populations associated to maize and to cotton in Brazil. Journal of Economic Entomology, 99, 516526.CrossRefGoogle Scholar
McKenzie, J.A. (1996) Ecological and evolutionary aspects of insecticide resistance. 185 pp. New York, Academic Press.Google Scholar
McMichael, M. & Prowell, D.P. (1994) Differences in amplified fragment-length polymorphisms in fall armyworm (Lepidoptera: Noctuidae) host strains. Annals of the Entomological Society of America 92, 175181.CrossRefGoogle Scholar
Meagher, R.N. & Nagoshi, R.L. (2004) Behavior and distribution of the two fall armyworm strains in Florida. Florida Entomologist 87, 440449.Google Scholar
Meagher, R.N., Nagoshi, R.L., Stuhl, C. & Mitchell, E.R. (2004) Larval development of fall armyworm (Lepidoptera: Noctuidae) in different cover crops. Florida Entomologist 87, 454460.CrossRefGoogle Scholar
Meldenson, T. & Shaw, K.L. (2002) Genetic and behavioral component of the cryptic species boundary between Laupala cerasiana and L. kohalensis (Orthoptera: Gryllidae). Genetica 116, 301310.Google Scholar
Milligan, B.G., Leebens-Mack, J. & Strand, A.E. (1994) Conservation genetics beyond the maintenance of marker diversity. Molecular Ecology 3, 423435.CrossRefGoogle Scholar
Nagoshi, R.N. & Meagher, R. (2003a) Fall armyworm FR sequences map to sex chromosomes and their distribution in the wild indicate limitation in the interstrain mating. Insect Molecular Biology, 12, 453458.CrossRefGoogle Scholar
Nagoshi, R.N. & Meagher, R. (2003b) FR tandem-repeat sequence in (Lepidoptera: Noctuidae) host strains. Annals of the Entomological Society of America, 96, 329335.CrossRefGoogle Scholar
Pashley, D.P., Johnson, S.J. & Sparks, A.N. (1985) Genetic population structure of migratory moths: the fall armyworm (Lepidoptera: Noctuidae). Annals of the Entomological Society of America 78, 756762.CrossRefGoogle Scholar
Pitre, H.W. (1988) Relationship of fall armyworm (Lepidoptera: Noctuidae) from Florida, Honduras, Jamaica and Mississippi: susceptibility to insecticides with reference to migration. Florida Entomologist 71, 5661.CrossRefGoogle Scholar
Prowell, D.P., McMichael, M. & Silvain, J.F. (2004) Multilocus genetic analysis of host use, introgression and speciation in host strains of fall armyworm (Lepidoptera: Noctuidae). Annals of the Entomological Society of America 97, 10341044.CrossRefGoogle Scholar
Roderick, K.R. (1996) Geographic structure of insect populations: gene flow, phylogeography, and their uses. Annual Review of Entomology 41, 325352.CrossRefGoogle ScholarPubMed
Rohlf, F.J. (2000) NTSYS-pc Numerical taxonomy and multivariate analysis system, version 2.1. Owner's manual.Google Scholar
Roush, R.T. & Daly, J.C. (1990) The role of population genetics in resistance research and management. pp. 97152in Roush, R.T. & Tabashnik, B.E. (Eds) Pesticide resistance in arthropods. New York, Chapman and Hall.CrossRefGoogle Scholar
Roush, R.T. & McKenzie, J.A. (1987) Ecological genetics of insecticide and acaricide resistance. Annual Review of Entomology 32, 361380.CrossRefGoogle ScholarPubMed
Schneider, S., Kueffer, J.M, Roessli, D. & Excoffier, L. (2000) ARLEQUIN version 2.0. A software for population genetic data analysis. Genetic and Biometry Laboratory, University of Geneva, Switzerland.Google Scholar
Sena, D.G. Jr, Pinto, F.A.C., Queiroz, D.M. and Viana, P.A. (2003) Fall armyworm damaged maize plant identification using digital images. Biosystems Engineering 85, 449454.CrossRefGoogle Scholar
Slatkin, M. (1985) Gene flow in natural populations. Annual Review of Evolution and Systematics 16, 393430.CrossRefGoogle Scholar
Sneath, P.H.A. & Sokal, R.R. (1973) Numerical taxonomy. 573 pp. San Francisco, W.H. Freeman and Company.Google Scholar
Sosa-Gomez, D.R. (2004) Intraspecific variation and population structure of the velvetbean caterpillar, Anticarsia gemmatalis Hübner, and 1818 (Insecta: Lepidoptera: Noctuidae). Genetics and Molecular Biology 27, 378384.CrossRefGoogle Scholar
Sparks, A.N. (1979) A review of the biology of the fall armyworm. Florida Entomologist 62, 8287.CrossRefGoogle Scholar
Tabashnik, B.E. (1991) Determining the mode of inheritance of pesticide resistance with blackcross experiments. Journal of Economic Entomology 38, 25326.Google Scholar
Timm, A.E., Pringle, K.L. & Warnich, L. (2005) Genetic diversity of woolly apple aphid Eriosoma lanigerum (Hemiptera: Aphididae) populations in the Western Cape, South Africa. Bulletin of Entomological Research 95, 187191.CrossRefGoogle ScholarPubMed
Vandewoestijne, S., Neve, G. & Baguette, M. (1999) Spatial and temporal population genetic structure of the butterfly Aglais urticae L. (Lepidoptera, Nymphalidae). Molecular Ecology 8, 15391543.CrossRefGoogle Scholar
Vos, P., Hogers, R., Bleeker, M., Reijans, M., Van de Lee, T., Hornes, M., Frijters, A., Peleman, J., Kuiper, M. & Zabeau, M. (1995) AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research 23, 44074414.CrossRefGoogle ScholarPubMed
Whitlock, M.C. & McCauley, D.E. (1999) Indirect measures of gene flow: Fst≠1/(4Nm+1). Heredity 82, 117125.CrossRefGoogle Scholar
Wright, S. (1931) Evolution in Mendelian populations. Genetics 16, 97157.Google ScholarPubMed
Yu, S.J. (1991) Insecticide resistance in the fall armyworm Spodoptera frugiperda (J.E. Smith). Pesticide Biochemistry and Physiology 39, 8491.CrossRefGoogle Scholar
Yu, S.J., Nguyen, S.N. & Abo-Elghar, G.E. (2003) Biochemical characteristics of insectcide resistance in the fall armyworm Spodoptera frugiperda (J.E. Smith). Pesticide Biochemistry and Physiology 77, 111.CrossRefGoogle Scholar
Zhang, L.P., Zhang, Y.J., Zhang, W.J., Wu, Q.J., Xu, B.Y. & Xu, D. (2005) Analysis of genetic diversity among different geographical populations and determination of biotypes of Bemisia tabaci in China. Journal of Applied Entomology 129, 121128.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 20
Total number of PDF views: 153 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 18th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Genetic structure and molecular variability of Spodoptera frugiperda (Lepidoptera: Noctuidae) collected in maize and cotton fields in Brazil
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Genetic structure and molecular variability of Spodoptera frugiperda (Lepidoptera: Noctuidae) collected in maize and cotton fields in Brazil
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Genetic structure and molecular variability of Spodoptera frugiperda (Lepidoptera: Noctuidae) collected in maize and cotton fields in Brazil
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *