Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-14T08:51:03.394Z Has data issue: false hasContentIssue false

Discrimination of the closely related biocontrol agents Macrolophus melanotoma (Hemiptera: Miridae) and M. pygmaeus using mitochondrial DNA analysis

Published online by Cambridge University Press:  09 March 2007

D.C. Perdikis
Affiliation:
Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
J.T. Margaritopoulos*
Affiliation:
Laboratory of Entomology and Agricultural Zoology, Department of Crop Production and Agricultural Environment, University of Thessaly, Fytokou Str., 38446, Nea Ionia, Magnesia, Greece
C. Stamatis
Affiliation:
Department of Biochemistry- Biotechnology, University of Thessaly, Ploutonos 26, 41221, Larissa, Greece
Z. Mamuris
Affiliation:
Department of Biochemistry- Biotechnology, University of Thessaly, Ploutonos 26, 41221, Larissa, Greece
D.P. Lykouressis
Affiliation:
Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
J.A. Tsitsipis
Affiliation:
Laboratory of Entomology and Agricultural Zoology, Department of Crop Production and Agricultural Environment, University of Thessaly, Fytokou Str., 38446, Nea Ionia, Magnesia, Greece
A. Pekas
Affiliation:
Laboratory of Entomology and Agricultural Zoology, Department of Crop Production and Agricultural Environment, University of Thessaly, Fytokou Str., 38446, Nea Ionia, Magnesia, Greece
*
*Fax: +30 24210 93286 E-mail: jmarg@uth.gr

Abstract

The separation of the closely related predatory species Macrolophus melanotoma Costa (= M. caliginosus Wagner) and Macrolophus pygmaeus (Rambur) based exclusively on the different colour pattern of the first antennal segment (white central band in M. melanotoma and entirely black in M. pygmaeus) is rather precarious and their taxonomic status is still in doubt. In the present study their taxonomic status was evaluated by DNA confirmatory analysis and hybridization experiments between M. pygmaeus and a Macrolophus taxon, resembling M. melanotoma, with a first antennal segment entirely black or with a white central band collected from Dittrichia viscosa (L.) W. Greuter (Asteraceae) in southern Greece. Adult females from Dittrichia plants hybridized with males of M. pygmaeus and vice versa did not produce viable eggs. The Macrolophus species from Dittrichia irrespective of the first antennal segment coloration differed from M. pygmaeusin digestive patterns generated by AseI, XbaI, and MseI on 16S rRNA and in RAPD profiles produced by the primers OPA-18 and OPA-20. These results demonstrate that on Dittrichia plants there is a distinct dimorphic taxon, M. melanotoma, as it is the only species of the genus Macrolophus bearing a first antennal segment with a central white band. Given the limitation of the coloration pattern, the mtDNA genetic markers are the appropriate method for the identification of M. melanotomaand M. pygmaeus.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albajes, R. & Alomar, O. (1999) Current and potential use of polyphagous predators. pp. 265275 in Albajes, R., Lodovica, Gullino M., van Lenteren, J.C. & Elad, Y. (Eds) Integrated pest disease management in greenhouse crops. Dordrecht, Netherlands, Kluwer Academic Publishers.CrossRefGoogle Scholar
Alomar, O., Goula, M. & Albajes, R. (1994) Mirid bugs for biological control: identification, survey in non-cultivated winter plants, and colonization of tomato fields. IOBC/WPRS Bulletin 17, 217223.Google Scholar
Alomar, O., Goula, M. & Albajes, R. (2002) Colonisation of tomato fields by predatory mirid bugs (Hemiptera: Heteroptera) in northern Spain. Agriculture Ecosystems and Environment 89, 105115.Google Scholar
Arzone, A., Alma, A. & Tavella, L. (1990) Role of mirids (Rhynchota Heteroptera) in the control of Trialeurodes vaporariorum Westw. (Rhynchota Aleyrodidae). Preliminary note. Bolletino di Zoologia Agraria e di Bachicoltura 22, 4351.Google Scholar
Black, W.C.I.V.DuTeau, N.M., Puterka, G.J., Nechols, J.R. & Pettorini, J.M. (1992) Use of the random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) to detect DNA polymorphisms in aphids. Bulletin of Entomological Research 82, 151159.Google Scholar
Bolckmans, K.J.F. & Tetteroo, A.N.M. (2002) Biological pest control in eggplants in the Netherlands. IOBC/WPRS Bulletin 25, 2528.Google Scholar
Carapezza, A. (1995) The specific identities of Macrolophus melanotoma (A. Costa, 1853) and Stenodema curticolle (A. Costa, 1853) (Insecta Heteroptera, Miridae). Naturalista Siciliano 19, 295298.Google Scholar
DeBach, P. & Rosen, D. (1991) Biological control by natural enemies. 2nd edn. 440 pp. Cambridge, Cambridge University PressGoogle Scholar
Denmark, H.A. (1996) Regulatory aspects of IPM. pp. 2328 in Rosen, D., Bennet, F.D. & Capinera, J.L. (Eds) Pest management in the subtropics. Andover, UK, Intercept.Google Scholar
Dixon, A.F.G. (1972) Control and significance of the seasonal development of colour forms in the sycamore aphid, Drepanosiphum platanoides (Schr.). Journal of Animal Ecology 41, 689697.Google Scholar
Fauvel, G., Malausa, J. & Kaspar, B. (1987) Etudé en laboratoire des principales characteristiques biologiques de Macrolophus caliginosus (Heteroptera: Miridae). Entomophaga 32, 529543.CrossRefGoogle Scholar
Fisher, S. & Leger, A. (1996) Macrolophus caliginosus W. (Heteroptera. Miridae) un auxiliaire à exploiter en serre. Revue Suisse de Viticulture, d'Arboriculture et d'Horticulture 28, 111112.Google Scholar
Goula, M. & Alomar, O. (1994) Mirids (Heteroptera: Miridae) of interest to integrated control management on tomato crops. A guide to their recognition. Boletin de Sanidad Vegetal Plagas 20, 131143.Google Scholar
Hadrys, H., Balick, M. & Scierwater, B. (1992) Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Molecular Ecology 1, 5563.Google Scholar
Hillert, O., Jäckel, B. & Plate, H.P. (2002) Macrolophus pygmaeus (Rambur 1839) (Heteroptera: Miridae)–ein interressanter Nützling im biologischen Pflanzenschutz. Gesunde Pflanzen 54, 6673.Google Scholar
Holloway, G.J., Marriot, C.G. & Crocker, H.J. (1997) Phenotypic plasticity in hoverflies: the relationship between colour pattern and season in Episyrphus balteatus and other Syrphidae. Ecological Entomology 22, 425432.CrossRefGoogle Scholar
Josifov, M. (1992) Zur taxonomie der paläarktischen Macrolophus-Arten. Reichenbachia 29, 14.Google Scholar
Knight, H.H. (1924) On the nature of colour patterns in Heteroptera with data on the effects produced by temperature and humidity. Annals of the Entomological Society of America 17, 258273.Google Scholar
Kotaki, T. (1998) Effects of low temperature on diapause termination and body colour change in adults of a stink bug Plautia stali. Physiological Entomology 23, 5361.Google Scholar
Lykouressis, D.P., Perdikis, D.C. & Chalkia, C.A. (19992000) The effects of natural enemies on aphid populations on processing tomato. Entomologia Hellenica 13, 3542.CrossRefGoogle Scholar
Lykouressis, D., Perdikis, D. & Tsagarakis, A. (2000) Polyphagous mirids in Greece: Host plants and abundance in traps placed in some crops. Bollettino del Laboratorio di Entomologia Agraria Filippo Silvestri 56, 5768.Google Scholar
Malausa, J.C. (1989) Lutte intégrée sous serre: les punaises prédatrices Mirides dans les cultures de Solanacées du sud-est de la France. P.H.M.-Revue Horticole 298, 3943.Google Scholar
Margaritopoulos, J.T., Mamuris, Z. & Tsitsipis, J.A. (1998) Attempted discrimination of Myzus persicae (Sulzer) and Myzus nicotianae Blackman (Homoptera: Aphididae) by random amplified polymorphic DNA polymerase chain reaction technique. Annals of the Entomological Society of America 91, 602607.Google Scholar
Margaritopoulos, J.T., Tsitsipis, J.A. & Perdikis, D.C. (2003) Biological characteristics of the mirids Macrolophus costalis and Macrolophus pygmaeus preying on the tobacco form of Myzus persicae (Hemiptera: Aphididae). Bulletin of Entomological Research 93, 3945.CrossRefGoogle ScholarPubMed
Obrycki, J.J. & Kring, T.J. (1998) Predaceous Coccinellidae in biological control. Annual Review of Entomology 43, 295321.Google Scholar
Palumbi, S.R., Martin, A., Romano, S.McMillan, W.O., Stice, L. & Grabowski, G. (1991) The simple tool's guide to PCR Department of Zoology, University of Hawaii, Honolulu Hawaii.Google Scholar
Perdikis, D. & Lykouressis, D. (2000) The effects of various diets, host plants and temperatures on the development and survival of Macrolophus pygmaeus Rambur (Hemiptera: Miridae). Biological Control 17, 5560.CrossRefGoogle Scholar
Perdikis, D. & Lykouressis, D. (20012002) Description of the eggs and the nymphal instars of Macrolophus pygmaeus Rambur (Hemiptera: Miridae). Entomologia Hellenica 14, 3240.CrossRefGoogle Scholar
Perdikis, D. & Lykouressis, D. (2002) Life table and biological characteristics of Macrolophus pygmaeus when feeding on Myzus persicae and Trialeurodes vaporariorum. Entomologia Experimentalis et Applicata 102, 261272.CrossRefGoogle Scholar
Putshkov, V.G. (1978) Species of the genus Macrolophus Fieber, 1858 (Heteroptera, Miridae) of the Soviet Union fauna. Dopovidi Akademia Nauk URSR, ser. B, Nr. 9, 853856.Google Scholar
Schlinger, E.I. & Doutt, R.L. (1965) Systematics in relation to biological control. pp. 247280in DeBach, P. (Ed.) Biological control of insect pests and weeds. London, Chapman and Hall.Google Scholar
Stichel, W. (1962) Illustrierte Bestimmungstabellen der Wanzen. II Europa (Hemiptera-Heteroptera Europae) BerlinHermsdorf. Vols 14, 2.173 pp.Google Scholar
Zitoudi, K., Margaritopoulos, J.T., Mamuris, Z. & Tsitsipis, J.A. (2001) Genetic variation in Myzus persicae (Homoptera: Aphididae) populations associated with host-plant and life cycle category. Entomologia Experimentalis et Applicata 99, 303311.Google Scholar