Skip to main content Accessibility help
×
Home

Wheat gluten intake increases the severity of experimental colitis and bacterial translocation by weakening of the proteins of the junctional complex

  • Penélope L. R. Menta (a1), Maria E. R. Andrade (a2), Paola C. L. Leocádio (a1), Júlia R. Fraga (a1), Melissa T. S. Dias (a1), Denise C. Cara (a3), Valbert N. Cardoso (a2), Luciano F. Borges (a4), Luciano S. A. Capettini (a5), Edenil C. Aguilar (a1) and Jacqueline I. Alvarez-Leite (a1)...

Abstract

Gluten is only partially digested by intestinal enzymes and can generate peptides that can alter intestinal permeability, facilitating bacterial translocation, thus affecting the immune system. Few studies addressed the role of diet with gluten in the development of colitis. Therefore, we investigate the effects of wheat gluten-containing diet on the evolution of sodium dextran sulphate (DSS)-induced colitis. Mice were fed a standard diet without (colitis group) or with 4·5 % wheat gluten (colitis + gluten) for 15 d and received DSS solution (1·5 %, w/v) instead of water during the last 7 d. Compared with the colitis group, colitis + gluten mice presented a worse clinical score, a larger extension of colonic injury area, and increased mucosal inflammation. Both intestinal permeability and bacterial translocation were increased, propitiating bacteria migration for peripheral organs. The mechanism by which diet with gluten exacerbates colitis appears to be related to changes in protein production and organisation in adhesion junctions and desmosomes. The protein α-E-catenin was especially reduced in mice fed gluten, which compromised the localisation of E-cadherin and β-catenin proteins, weakening the structure of desmosomes. The epithelial damage caused by gluten included shortening of microvilli, a high number of digestive vacuoles, and changes in the endosome/lysosome system. In conclusion, our results show that wheat gluten-containing diet exacerbates the mucosal damage caused by colitis, reducing intestinal barrier function and increasing bacterial translocation. These effects are related to the induction of weakness and disorganisation of adhesion junctions and desmosomes as well as shortening of microvilli and modification of the endocytic vesicle route.

Copyright

Corresponding author

*Corresponding author: Dr P. L. R. Menta, email nutripenelope@gmail.com

References

Hide All
1. Shewry, PR, Halford, NG, Belton, PS, et al. (2002) The structure and properties of gluten: an elastic protein from wheat grain. Philos Trans R Soc Lond B Biol Sci 357, 133142.
2. Shan, L, Molberg, Ø, Parrot, I, et al. (2002) Structural basis for gluten intolerance in celiac sprue. Science 297, 22752279.
3. Caminero, A, Galipeau, HJ, McCarville, JL, et al. (2016) Duodenal bacteria from patients with celiac disease and healthy subjects distinctly affect gluten breakdown and immunogenicity. Gastroenterology 151, 670683.
4. Hawrelak, JA & Myers, SP (2004) The causes of intestinal dysbiosis: a review. Altern Med Rev 9, 180197.
5. de Lorgeril, M & Salen, P (2014) Gluten and wheat intolerance today: are modern wheat strains involved? Int J Food Sci Nutr 65, 577581.
6. Galipeau, HJ, McCarville, JL, Huebener, S, et al. (2015) Intestinal microbiota modulates gluten-induced immunopathology in humanized mice. Am J Pathol 185, 29692982.
7. Sanz, Y (2015) Microbiome and gluten. Ann Nutr Metab 67, Suppl. 2, 2841.
8. Zevallos, VF, Raker, V, Tenzer, S, et al. (2017) Nutritional wheat amylase–trypsin inhibitors promote intestinal inflammation via activation of myeloid cells. Gastroenterology 152, 11001113.e12.
9. Bellinghausen, I, Weigmann, B, Zevallos, V, et al. (2018) Wheat amylase–trypsin inhibitors exacerbate intestinal and airway allergic immune responses in humanized mice. J Allergy Clin Immunol (epublication ahead of print version 21 March 2018).
10. Junker, Y, Zeissig, S, Kim, SJ, et al. (2012) Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4. J Exp Med 209, 23952408.
11. Biesiekierski, JR, Newnham, ED, Irving, PM, et al. (2011) Gluten causes gastrointestinal symptoms in subjects without celiac disease: a double-blind randomized placebo-controlled trial. Am J Gastroenterol 106, 508514; quiz 515.
12. Hafström, I, Ringertz, B, Spångberg, A, et al. (2001) A vegan diet free of gluten improves the signs and symptoms of rheumatoid arthritis: the effects on arthritis correlate with a reduction in antibodies to food antigens. Rheumatology 40, 11751179.
13. Mojibian, M, Chakir, H, Lefebvre, DE, et al. (2009) Diabetes-specific HLA-DR-restricted proinflammatory T-cell response to wheat polypeptides in tissue transglutaminase antibody-negative patients with type 1 diabetes. Diabetes 58, 17891796.
14. Soares, FL, de Oliveira Matoso, R, Teixeira, LG, et al. (2013) Gluten-free diet reduces adiposity, inflammation and insulin resistance associated with the induction of PPAR-alpha and PPAR-gamma expression. J Nutr Biochem 24, 11051111.
15. Herfarth, HH, Martin, CF, Sandler, RS, et al. (2014) Prevalence of a gluten-free diet and improvement of clinical symptoms in patients with inflammatory bowel diseases. Inflamm Bowel Dis 20, 11941197.
16. Abraham, BP (2015) Symptom management in inflammatory bowel disease. Expert Rev Gastroenterol Hepatol 9, 953967.
17. Walton, M & Alaunyte, I (2014) Do patients living with ulcerative colitis adhere to healthy eating guidelines? A cross-sectional study. Br J Nutr 112, 16281635.
18. Kornbluth, A, Sachar, DB & Practice Parameters Committee of the American College of Gastroenterology (2010) Ulcerative colitis practice guidelines in adults: American College of Gastroenterology, Practice Parameters Committee. Am J Gastroenterol 105, 501523; quiz 524.
19. Loftus, EV Jr (2004) Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology 126, 15041517.
20. Ng, SC, Shi, HY, Hamidi, N, et al. (2018) Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390, 27692778.
21. Vieira, EL, Leonel, AJ, Sad, AP, et al. (2012) Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. J Nutr Biochem 23, 430436.
22. Wirtz, S, Neufert, C, Weigmann, B, et al. (2007) Chemically induced mouse models of intestinal inflammation. Nat Protoc 2, 541546.
23. Werner, U & Szelenyi, I (1992) Measurement of MPO activity as model for detection of granulocyte infiltration in different tissues. Agents Actions, Spec No., C101C103.
24. MacPherson, BR & Pfeiffer, CJ (1978) Experimental production of diffuse colitis in rats. Digestion 17, 135150.
25. Andrade, ME, Santos, RD, Soares, AD, et al. (2015) Pretreatment and treatment with l-arginine attenuate weight loss and bacterial translocation in dextran sulfate sodium colitis. JPEN J Parenter Enteral Nutr 40, 11311139.
26. Lowry, O, Rosebrough, NJ, Farr, AL, et al. (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265275.
27. Andrade, MER (2013) Ação da arginina na permeabilidade intestinal, translocação bacteriana e resposta imune local, em modelo experimental de colite ulcerativa (Arginine Action on Intestinal Permeability, Bacterial Translocation and Local Immune Response in an Experimental Model of Ulcerative Colitis), p. 88. Minas Gerais: Food Science Department of Faculty of Pharmacy, Federal University of Minas Gerais.
28. Lammers, KM, Chieppa, M, Liu, L, et al. (2015) Gliadin induces neutrophil migration via engagement of the formyl peptide receptor, FPR1. PLOS ONE 10, e0138338.
29. Sangfelt, P, Carlson, M, Thorn, M, et al. (2001) Neutrophil and eosinophil granule proteins as markers of response to local prednisolone treatment in distal ulcerative colitis and proctitis. Am J Gastroenterol 96, 10851090.
30. Forbes, E, Murase, T, Yang, M, et al. (2004) Immunopathogenesis of experimental ulcerative colitis is mediated by eosinophil peroxidase. J Immunol 172, 56645675.
31. Yan, Y, Kolachala, V, Dalmasso, G, et al. (2009) Temporal and spatial analysis of clinical and molecular parameters in dextran sodium sulfate induced colitis. PLoS ONE 4, e6073.
32. Oliveira, LG, Cunha, AL, Duarte, AC, et al. (2014) Positive correlation between disease activity index and matrix metalloproteinases activity in a rat model of colitis. Arq Gastroenterol 51, 107112.
33. Okayasu, I, Hatakeyama, S, Yamada, M, et al. (1990) A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98, 694702.
34. Schwartz, L, Abolhassani, M, Pooya, M, et al. (2008) Hyperosmotic stress contributes to mouse colonic inflammation through the methylation of protein phosphatase 2A. Am J Physiol Gastrointest Liver Physiol 295, G934G941.
35. Volta, U, Caio, G, Tovoli, F, et al. (2013) Non-celiac gluten sensitivity: questions still to be answered despite increasing awareness. Cell Mol Immunol 10, 383392.
36. Volta, U, Pinto-Sanchez, MI, Boschetti, E, et al. (2016) Dietary triggers in irritable bowel syndrome: is there a role for gluten. J Neurogastroenterol Motil 22, 547557.
37. Daulatzai, MA (2015) Non-celiac gluten sensitivity triggers gut dysbiosis, neuroinflammation, gut-brain axis dysfunction, and vulnerability for dementia. CNS Neurol Disord Drug Targets 14, 110131.
38. Tovoli, F, Masi, C, Guidetti, E, et al. (2015) Clinical and diagnostic aspects of gluten related disorders. World J Clin Cases 3, 275284.
39. De Palma, G, Nadal, I, Collado, MC, et al. (2009) Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects. Br J Nutr 102, 11541160.
40. Fasano, A, Not, T, Wang, W, et al. (2000) Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet 355, 15181519.
41. Drago, S, El Asmar, R, Di Pierro, M, et al. (2006) Gliadin, zonulin and gut permeability: effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol 41, 408419.
42. Lammers, KM, Lu, R, Brownley, J, et al. (2008) Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology 135, 194204.e3.
43. Sander, GR, Cummins, AG, Henshall, T, et al. (2005) Rapid disruption of intestinal barrier function by gliadin involves altered expression of apical junctional proteins. FEBS Lett 579, 48514855.
44. Ménard, S, Cerf-Bensussan, N & Heyman, M (2010) Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal Immunol 3, 247259.
45. Sapone, A, Bai, JC, Ciacci, C, et al. (2012) Spectrum of gluten-related disorders: consensus on new nomenclature and classification. BMC Med 10, 13.
46. Bruewer, M, Samarin, S & Nusrat, A (2006) Inflammatory bowel disease and the apical junctional complex. Ann N Y Acad Sci 1072, 242252.
47. Shawki, A & McCole, DF (2017) Mechanisms of intestinal epithelial barrier dysfunction by adherent-invasive Escherichia coli . Cell Mol Gastroenterol Hepatol 3, 4150.
48. Bidmon-Fliegenschnee, B, Lederhuber, HC, Csaicsich, D, et al. (2015) Overexpression of Hsp70 confers cytoprotection during gliadin exposure in Caco-2 cells. Pediatric Res 78, 358364.
49. Grill, JI, Neumann, J, Hiltwein, F, et al. (2015) Intestinal E-cadherin deficiency aggravates dextran sodium sulfate-induced colitis. Dig Dis Sci 60, 895902.
50. Zhang, C, Liu, LW, Sun, WJ, et al. (2015) Expressions of E-cadherin, p120ctn, beta-catenin and NF-kappaB in ulcerative colitis. J Huazhong Univ Sci Technolog Med Sci 35, 368373.
51. Vermeulen, SJ, Bruyneel, EA, Bracke, ME, et al. (1995) Transition from the noninvasive to the invasive phenotype and loss of alpha-catenin in human colon cancer cells. Cancer Res 55, 47224728.
52. Karayiannakis, AJ, Syrigos, KN, Efstathiou, J, et al. (1998) Expression of catenins and E-cadherin during epithelial restitution in inflammatory bowel disease. J Pathol 185, 413418.
53. Li, J, Newhall, J, Ishiyama, N, et al. (2015) Structural determinants of the mechanical stability of alpha-catenin. J Biol Chem 290, 1889018903.
54. Thiery, JP & Sleeman, JP (2006) Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol 7, 131142.
55. Taniguchi, T, Miyazaki, M, Miyashita, Y, et al. (2005) Identification of regions of alpha-catenin required for desmosome organization in epithelial cells. Int J Mol Med 16, 10031008.
56. Choi, SH, Estarás, C, Moresco, JJ, et al. (2013) α-Catenin interacts with APC to regulate β-catenin proteolysis and transcriptional repression of Wnt target genes. Genes Dev 27, 24732488.
57. Vasioukhin, V, Bauer, C, Degenstein, L, et al. (2001) Hyperproliferation and defects in epithelial polarity upon conditional ablation of α-catenin in skin. Cell 104, 605617.
58. Matte, U & Pasqualim, G (2016) Lysosome: the story beyond the storage. J Inborn Errors Metab Screen 4, 17.
59. Wiest, R & Rath, HC (2003) Gastrointestinal disorders of the critically ill. Bacterial translocation in the gut. Best Pract Res Clin Gastroenterol 17, 397425.
60. Wang, Q, Wang, B, Saxena, V, et al. (2018) The gut-liver axis: impact of a mouse model of small-bowel bacterial overgrowth. J Surg Res 221, 246256.
61. Hollon, J, Puppa, EL, Greenwald, B, et al. (2015) Effect of gliadin on permeability of intestinal biopsy explants from celiac disease patients and patients with non-celiac gluten sensitivity. Nutrients 7, 15651576.
62. Zimmermann, C, Rudloff, S, Lochnit, G, et al. (2014) Epithelial transport of immunogenic and toxic gliadin peptides in vitro . PLOS ONE 9, e113932.
63. De Re, V, Caggiari, L, Tabuso, M, et al. (2013) The versatile role of gliadin peptides in celiac disease. Clin Biochem 46, 552560.

Keywords

Type Description Title
PDF
Supplementary materials

Menta et al. supplementary material
Menta et al. supplementary material 1

 PDF (303 KB)
303 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed