Skip to main content Accessibility help
×
Home

Weak effect of trans-10, cis-12-conjugated linoleic acid on body fat accumulation in adult hamsters

  • Jonatan Miranda (a1), Itziar Churruca (a1), Alfredo Fernández-Quintela (a1), Victor Manuel Rodríguez (a1), María Teresa Macarulla (a1), Edurne Simón (a1) and María Puy Portillo (a1)...

Abstract

It has been proposed that young animals and subjects are more responsive to conjugated linoleic acid (CLA) than the adults. Nevertheless, there is very little information concerning the effectiveness of CLA in adult animals. In the present study we aimed to explore the effects of trans-10, cis-12-CLA on body fat accumulation in adult hamsters, as well as on some of the molecular mechanisms described in young animals as responsible for the CLA body fat-lowering effect, such as lipogenesis, lipoprotein lipase (LPL)-mediated fat uptake and thermogenesis. The experiment was conducted with sixteen adult male Syrian Golden hamsters (aged 8 months) fed a high-fat diet supplemented or not with 0·5 % trans-10, cis-12-CLA for 6 weeks. Acetyl-CoA carboxylase (ACX), fatty acid synthase (FAS), LPL, PPARγ, sterol regulatory element-binding protein (SREBP)-1a and SREBP-1c expressions were assessed in subcutaneous and perirenal adipose tissues by real-time RT-PCR. Total and heparin-releasable LPL activities were determined in subcutaneous adipose tissue by fluorimetry and FAS activity by spectrophotometry. Uncoupling protein-1 (UCP1) expression in interscapular brown adipose tissue was assessed by Western blot. Hamsters fed the trans-10, cis-12-CLA diet showed a significant reduction in subcutaneous adipose tissue. No changes were observed in the expression of ACX, FAS, LPL, SREBP-1a, SREBP-1c and PPARγ, nor in total and heparin-releasable LPL and FAS activities. Trans-10, cis-12-CLA induced a significant increase in the amount of UCP1. These results suggest a low responsiveness to trans-10, cis-12-CLA in adults, lower than that in young hamsters. One of the reasons explaining this difference is the lack of effect on LPL.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Weak effect of trans-10, cis-12-conjugated linoleic acid on body fat accumulation in adult hamsters
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Weak effect of trans-10, cis-12-conjugated linoleic acid on body fat accumulation in adult hamsters
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Weak effect of trans-10, cis-12-conjugated linoleic acid on body fat accumulation in adult hamsters
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr María P. Portillo, fax +34 945 013014, email mariapuy.portillo@ehu.es

References

Hide All
1 Wang, YW & Jones, PJ (2004) Conjugated linoleic acid and obesity control: efficacy and mechanisms. Int J Obes Relat Metab Disord 28, 941955.
2 Bhattacharya, A, Banu, J, Rahman, M, et al. (2006) Biological effects of conjugated linoleic acids in health and disease. J Nutr Biochem 17, 789810.
3 Park, Y & Pariza, MW (2007) Mechanisms of body fat modulation by conjugated linoleic acid (CLA). Food Res Int 40, 311323.
4 Larsen, TM, Toubro, S & Astrup, A (2003) Efficacy and safety of dietary supplements containing CLA for the treatment of obesity: evidence from animal and human studies. J Lipid Res 44, 22342241.
5 Terpstra, AH (2004) Effect of conjugated linoleic acid on body composition and plasma lipids in humans: an overview of the literature. Am J Clin Nutr 79, 352361.
6 Salas-Salvado, J, Marquez-Sandoval, F & Bullo, M (2006) Conjugated linoleic acid intake in humans: a systematic review focusing on its effect on body composition, glucose, and lipid metabolism. Crit Rev Food Sci Nutr 46, 479488.
7 Navarro, V, Fernández-Quintela, A, Churruca, I, et al. (2006) The body fat-lowering effect of conjugated linoleic acid: a comparison between animal and human studies. J Physiol Biochem 62, 137147.
8 Mirand, PP, Arnal-Bagnard, MA, Mosoni, L, et al. (2004) Cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid isomers do not modify body composition in adult sedentary or exercised rats. J Nutr 134, 22632269.
9 Faulconnier, Y, Arnal, MA, Patureau Mirand, P, et al. (2004) Isomers of conjugated linoleic acid decrease plasma lipids and stimulate adipose tissue lipogenesis without changing adipose weight in post-prandial adult sedentary or trained Wistar rats. J Nutr Biochem 15, 741748.
10 Park, Y, Albright, K, Storkson, J, et al. (1999) Changes in body composition in mice during feeding and withdrawal of conjugated linoleic acid. Lipids 34, 243248.
11 Miner, JL, Cederberg, CA, Nielsen, MK, et al. (2001) Conjugated linoleic acid (CLA), body fat, and apoptosis. Obes Res 9, 129134.
12 Navarro, V, Miranda, J, Churruca, I, et al. (2006) Effects of trans-10, cis-12 conjugated linoleic acid on body fat and serum lipids in young and adult hamsters. J Physiol Biochem 62, 8187.
13 Eckel, R (1989) Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases. N Engl J Med 320, 10601068.
14 Kersten, S (2002) Peroxisome proliferator activated receptors and obesity. Eur J Pharmacol 440, 223234.
15 Khan, S & Vanden Heuvel, J (2003) Role of nuclear receptors in the regulation of gene expression by dietary fatty acids (review). J Nutr Biochem 14, 554567.
16 Pai, J, Guryev, O, Brown, M, et al. (1998) Differential stimulation of cholesterol and unsaturated fatty acid biosynthesis in cells expressing individual nuclear sterol regulatory element-binding proteins. J Biol Chem 273, 2613826148.
17 Shimano, H (2001) Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. Prog Lipid Res 40, 439452.
18 Horton, J (2002) Sterol regulatory element-binding proteins (SREBPs): transcriptional activators of lipid synthesis. Biochem Soc Trans 30, 10911095.
19 Himms-Hagen, J (1985) Brown adipose tissue metabolism and thermogenesis. Annu Rev Nutr 5, 6994.
20 Reeves, P, Nielsen, F & Fahey, GJ (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123, 19391951.
21 Bradford, MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248254.
22 Zabala, A, Churruca, I, Fernandez-Quintela, A, et al. (2006) Trans-10, cis-12 conjugated linoleic acid inhibits lipoprotein lipase but increases the activity of lipogenic enzymes in adipose tissue from hamsters fed an atherogenic diet. Br J Nutr 95, 11121119.
23 Lynen, F (1969) Yeast fatty acid synthase. Methods Enzymol 14, 1417.
24 Livak, K & Schmittgen, T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25, 402408.
25 Miranda, J, Fernández-Quintela, A, Churruca, I, et al. (2009) Hepatomegaly induced by trans-10, cis-12 conjugated linoleic acid in adult hamsters fed an atherogenic diet is not associated with steatosis. J Am Coll Nutr 28, 4349.
26 Kelley, DS & Erickson, KL (2003) Modulation of body composition and immune cell functions by conjugated linoleic acid in humans and animal models: benefits vs. risks. Lipids 38, 377386.
27 Kim, MR, Park, Y, Albright, KJ, et al. (2002) Differential responses of hamsters and rats fed high-fat or low-fat diets supplemented with conjugated linoleic acid. Nutr Res 22, 715722.
28 Pariza, MW (2004) Perspective on the safety and effectiveness of conjugated linoleic acid. Am J Clin Nutr 79, 1132S1136S.
29 Wahle, K, Heys, S & Rotondo, D (2004) Conjugated linoleic acids: are they beneficial or detrimental to health? Prog Lipid Res 43, 553587.
30 Navarro, V, Zabala, A, Macarulla, MT, et al. (2003) Effects of conjugated linoleic acid on body fat accumulation and serum lipids in hamsters fed an atherogenic diet. J Physiol Biochem 59, 193199.
31 Park, Y, Albright, K, Liu, W, et al. (1997) Effect of conjugated linoleic acid on body composition in mice. Lipids 32, 853858.
32 Park, Y, Storkson, J, Albright, K, et al. (1999) Evidence that the trans-10, cis-12 isomer of conjugated linoleic acid induces body composition changes in mice. Lipids 34, 235241.
33 Park, Y & Pariza, M (2001) The effects of dietary conjugated nonadecadienoic acid on body composition in mice. Biochim Biophys Acta 1533, 171174.
34 Park, Y, Storkson, J, Liu, W, et al. (2004) Structure–activity relationship of conjugated linoleic acid and its cognates in inhibiting heparin-releasable lipoprotein lipase and glycerol release from fully differentiated 3T3-L1 adipocytes. J Nutr Biochem 15, 561568.
35 Lin, Y, Kreeft, A, Schuurbiers, J, et al. (2001) Different effects of conjugated linoleic acid isomers on lipoprotein lipase activity in 3T3-L1 adipocytes. J Nutr Biochem 12, 183189.
36 Xu, X, Storkson, J, Kim, S, et al. (2003) Short-term intake of conjugated linoleic acid inhibits lipoprotein lipase and glucose metabolism but does not enhance lipolysis in mouse adipose tissue. J Nutr 133, 663667.
37 West, D, Blohm, F, Truett, A, et al. (2000) Conjugated linoleic acid persistently increases total energy expenditure in AKR/J mice without increasing uncoupling protein gene expression. J Nutr 130, 24712477.
38 Kang, K, Miyazaki, M, Ntambi, J, et al. (2004) Evidence that the anti-obesity effect of conjugated linoleic acid is independent of effects on stearoyl-CoA desaturase 1 expression and enzyme activity. Biochem Biophys Res Commun 315, 532537.
39 Azain, MJ, Hausman, DB, Sisk, MB, et al. (2000) Dietary conjugated linoleic acid reduces rat adipose tissue cell size rather than cell number. J Nutr 130, 15481554.
40 Tsuboyama-Kasaoka, N, Takahashi, M, Tanemura, K, et al. (2000) Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes 49, 15341542.
41 Clement, L, Poirier, H, Niot, I, et al. (2002) Dietary trans-10, cis-12 conjugated linoleic acid induces hyperinsulinemia and fatty liver in the mouse. J Lipid Res 43, 14001409.
42 Pariza, M, Park, Y & Cook, M (2001) The biologically active isomers of conjugated linoleic acid. Prog Lipid Res 40, 283298.
43 Roche, H, Noone, E & Gibney, A (2001) Conjugated linoleic acid: a novel therapeutic nutrient? Nutr Res Rev 14, 173188.
44 Ryder, J, Portocarrero, C, Song, X, et al. (2001) Isomer-specific antidiabetic properties of conjugated linoleic acid. Improved glucose tolerance, skeletal muscle insulin action, and UCP-2 gene expression. Diabetes 50, 11491157.
45 Ealey, KN, El-Sohemy, A & Archer, MC (2002) Effects of dietary conjugated linoleic acid on the expression of uncoupling proteins in mice and rats. Lipids 37, 853861.
46 Roche, H, Noone, E, Sewter, C, et al. (2002) Isomer-dependent metabolic effects of conjugated linoleic acid: insights from molecular markers sterol regulatory element-binding protein-1c and LXRα. Diabetes 51, 20372044.
47 Rodríguez, E, Ribot, J & Palou, A (2002) Trans-10, cis-12, but not cis-9, trans-11 CLA isomer, inhibits brown adipocyte thermogenic capacity. Am J Physiol Regul Integr Comp Physiol 282, R1789R1797.
48 Takahashi, Y, Kushiro, M, Shinohara, K, et al. (2002) Dietary conjugated linoleic acid reduces body fat mass and affects gene expression of proteins regulating energy metabolism in mice. Comp Biochem Physiol B Biochem Mol Biol 133, 395404.
49 Choi, JS, Jung, MH, Park, HS, et al. (2004) Effect of conjugated linoleic acid isomers on insulin resistance and mRNA levels of genes regulating energy metabolism in high-fat-fed rats. Nutrition 20, 10081017.

Keywords

Weak effect of trans-10, cis-12-conjugated linoleic acid on body fat accumulation in adult hamsters

  • Jonatan Miranda (a1), Itziar Churruca (a1), Alfredo Fernández-Quintela (a1), Victor Manuel Rodríguez (a1), María Teresa Macarulla (a1), Edurne Simón (a1) and María Puy Portillo (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed