Skip to main content Accessibility help
×
Home

Vitamin D supplementation and inflammatory and metabolic biomarkers in patients with knee osteoarthritis: post hoc analysis of a randomised controlled trial

  • Shuang Zheng (a1), Bing Wang (a2), Weiyu Han (a1), Zhaohua Zhu (a1), Xia Wang (a1), Xingzhong Jin (a1), Benny Antony (a1), Flavia Cicuttini (a2), Anita Wluka (a2), Tania Winzenberg (a1) (a3), Dawn Aitken (a1), Leigh Blizzard (a1), Graeme Jones (a1) and Changhai Ding (a1) (a2) (a4)...
  • Please note a correction has been issued for this article.

Abstract

The aim of this study was to determine whether vitamin D supplementation and maintaining vitamin D sufficiency are associated with changes in inflammatory and metabolic biomarkers in patients with knee osteoarthritis (OA) and vitamin D deficiency. A total of 413 participants with symptomatic knee OA and vitamin D deficiency were enrolled in a randomised, placebo-controlled trial and received 1·25 mg vitamin D3 or placebo monthly for 24 months across two sites. In this post hoc analysis, 200 participants from one site (ninety-four from the placebo group and 106 from the vitamin D group; mean age 63·1 (sd 7·3) years, 53·3 % women) were randomly selected for measurement of serum levels of inflammatory and metabolic biomarkers at baseline and 24 months using immunoassays. In addition, participants were classified into two groups according to serum 25-hydroxyvitamin D (25(OH)D) levels at months 3 and 24: (1) not consistently sufficient (25(OH)D≤50 nmol/l at either month 3 or 24, n 61), and (2) consistently sufficient (25(OH)D>50 nmol/l at both months 3 and 24, n 139). Compared with placebo, vitamin D supplementation had no significant effect on change in serum high-sensitive C-reactive protein, IL-6, IL-8, IL-10, leptin, adiponectin, resistin, adipsin and apelin. Being consistently vitamin D sufficient over 2 years was also not associated with changes in these biomarkers compared with not being consistently sufficient. Vitamin D supplementation and maintaining vitamin D sufficiency did not alter serum levels of inflammatory and metabolic biomarkers over 2 years in knee OA patients who were vitamin D insufficient, suggesting that they may not affect systemic inflammation in knee OA patients.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Vitamin D supplementation and inflammatory and metabolic biomarkers in patients with knee osteoarthritis: post hoc analysis of a randomised controlled trial
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Vitamin D supplementation and inflammatory and metabolic biomarkers in patients with knee osteoarthritis: post hoc analysis of a randomised controlled trial
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Vitamin D supplementation and inflammatory and metabolic biomarkers in patients with knee osteoarthritis: post hoc analysis of a randomised controlled trial
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: C. Ding, email Changhai.Ding@utas.edu.au

References

Hide All
1. Vos, T, Flaxman, AD, Naghavi, M, et al. (2012) Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 21632196.
2. Man, GS & Mologhianu, G (2014) Osteoarthritis pathogenesis – a complex process that involves the entire joint. J Med Life 7, 3741.
3. Wang, X, Hunter, D, Xu, J, et al. (2015) Metabolic triggered inflammation in osteoarthritis. Osteoarthritis Cartilage 23, 2230.
4. Sokolove, J & Lepus, CM (2013) Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther Adv Musculoskelet Dis 5, 7794.
5. Mabey, T & Honsawek, S (2015) Role of vitamin D in osteoarthritis: molecular, cellular, and clinical perspectives. Int J Endocrinol 2015, 383918.
6. Cao, Y, Winzenberg, T, Nguo, K, et al. (2013) Association between serum levels of 25-hydroxyvitamin D and osteoarthritis: a systematic review. Rheumatology (Oxford) 52, 13231334.
7. Calton, EK, Keane, KN, Newsholme, P, et al. (2015) The impact of vitamin d levels on inflammatory status: a systematic review of immune cell studies. PLOS ONE 10, e0141770.
8. Szeto, FL, Sun, J, Kong, J, et al. (2007) Involvement of the vitamin D receptor in the regulation of NF-kappaB activity in fibroblasts. J Steroid Biochem Mol Biol 103, 563566.
9. Hong, Q, Xu, J, Xu, S, et al. (2014) Associations between serum 25-hydroxyvitamin D and disease activity, inflammatory cytokines and bone loss in patients with rheumatoid arthritis. Rheumatology (Oxford) 53, 19942001.
10. Yin, K & Agrawal, DK (2014) Vitamin D and inflammatory diseases. J Inflamm Res 7, 6987.
11. de Medeiros Cavalcante, IG, Silva, AS, Costa, MJ, et al. (2015) Effect of vitamin D3 supplementation and influence of BsmI polymorphism of the VDR gene of the inflammatory profile and oxidative stress in elderly women with vitamin D insufficiency: vitamin D3 megadose reduces inflammatory markers. Exp Gerontol 66, 1016.
12. Tabesh, M, Azadbakht, L, Faghihimani, E, et al. (2014) Calcium-vitamin D cosupplementation influences circulating inflammatory biomarkers and adipocytokines in vitamin D-insufficient diabetics: a randomized controlled clinical trial. J Clin Endocrinol Metab 99, E2485E2493.
13. Hopkins, MH, Owen, J, Ahearn, T, et al. (2011) Effects of supplemental vitamin D and calcium on biomarkers of inflammation in colorectal adenoma patients: a randomized, controlled clinical trial. Cancer Prev Res (Phila) 4, 16451654.
14. Schleithoff, SS, Zittermann, A, Tenderich, G, et al. (2006) Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr 83, 754759.
15. Jin, X, Jones, G, Cicuttini, F, et al. (2016) Effect of vitamin D supplementation on tibial cartilage volume and knee pain among patients with symptomatic knee osteoarthritis: a randomized clinical trial. JAMA 315, 10051013.
16. Wang, X, Cicuttini, F, Jin, X, et al. (2017) Knee effusion-synovitis volume measurement and effects of vitamin D supplementation in patients with knee osteoarthritis. Osteoarthritis Cartilage 25, 13041312.
17. Cao, Y, Jones, G, Cicuttini, F, et al. (2012) Vitamin D supplementation in the management of knee osteoarthritis: study protocol for a randomized controlled trial. Trials 13, 131.
18. Altman, R, Asch, E, Bloch, D, et al. (1986) Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum 29, 10391049.
19. Altman, RD & Gold, GE (2007) Atlas of individual radiographic features in osteoarthritis, revised. Osteoarthritis Cartilage 15, Suppl. A, A1A56.
20. Zheng, S, Jin, X, Cicuttini, F, et al. (2017) Maintaining vitamin D sufficiency is associated with improved structural and symptomatic outcomes in knee osteoarthritis. Am J Med 130, 12111218.
21. Jin, X, Beguerie, JR, Zhang, W, et al. (2015) Circulating C reactive protein in osteoarthritis: a systematic review and meta-analysis. Ann Rheum Dis 74, 703710.
22. Kadam, P & Bhalerao, S (2010) Sample size calculation. Int J Ayurveda Res 1, 5557.
23. Stannus, O, Jones, G, Cicuttini, F, et al. (2010) Circulating levels of IL-6 and TNF-alpha are associated with knee radiographic osteoarthritis and knee cartilage loss in older adults. Osteoarthritis Cartilage 18, 14411447.
24. Stannus, OP, Jones, G, Blizzard, L, et al. (2013) Associations between serum levels of inflammatory markers and change in knee pain over 5 years in older adults: a prospective cohort study. Ann Rheum Dis 72, 535540.
25. de Boer, TN, van Spil, WE, Huisman, AM, et al. (2012) Serum adipokines in osteoarthritis; comparison with controls and relationship with local parameters of synovial inflammation and cartilage damage. Osteoarthritis Cartilage 20, 846853.
26. Martel-Pelletier, J, Raynauld, JP, Dorais, M, et al. (2016) The levels of the adipokines adipsin and leptin are associated with knee osteoarthritis progression as assessed by MRI and incidence of total knee replacement in symptomatic osteoarthritis patients: a post hoc analysis. Rheumatology (Oxford) 55, 680688.
27. Stannus, OP, Cao, Y, Antony, B, et al. (2015) Cross-sectional and longitudinal associations between circulating leptin and knee cartilage thickness in older adults. Ann Rheum Dis 74, 8288.
28. Ding, C, Parameswaran, V, Blizzard, L, et al. (2010) Not a simple fat-soluble vitamin: changes in serum 25-(OH)D levels are predicted by adiposity and adipocytokines in older adults. J Intern Med 268, 501510.
29. Ticinesi, A, Meschi, T, Lauretani, F, et al. (2016) Nutrition and inflammation in older individuals: focus on vitamin D, n-3 polyunsaturated fatty acids and whey proteins. Nutrients 8, 186.
30. Chen, N, Wan, Z, Han, SF, et al. (2014) Effect of vitamin D supplementation on the level of circulating high-sensitivity C-reactive protein: a meta-analysis of randomized controlled trials. Nutrients 6, 22062216.
31. Razzaghi, R, Pourbagheri, H, Momen-Heravi, M, et al. (2017) The effects of vitamin D supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. J Diabetes Complications 31, 766–772.
32. Pittas, AG, Harris, SS, Stark, PC, et al. (2007) The effects of calcium and vitamin D supplementation on blood glucose and markers of inflammation in nondiabetic adults. Diabetes Care 30, 980986.
33. Barnes, MS, Horigan, G, Cashman, KD, et al. (2011) Maintenance of wintertime vitamin D status with cholecalciferol supplementation is not associated with alterations in serum cytokine concentrations among apparently healthy younger or older adults. J Nutr 141, 476481.
34. Yusupov, E, Li-Ng, M, Pollack, S, et al. (2010) Vitamin D and serum cytokines in a randomized clinical trial. Int J Endocrinol 2010, 305054.
35. Wood, AD, Secombes, KR, Thies, F, et al. (2012) Vitamin D3 supplementation has no effect on conventional cardiovascular risk factors: a parallel-group, double-blind, placebo-controlled RCT. J Clin Endocrinol Metab 97, 35573568.
36. Waterhouse, M, Tran, B, Ebeling, PR, et al. (2015) Effect of vitamin D supplementation on selected inflammatory biomarkers in older adults: a secondary analysis of data from a randomised, placebo-controlled trial. Br J Nutr 114, 693699.
37. Li, XC, Tian, F & Wang, F (2014) Clinical significance of resistin expression in osteoarthritis: a meta-analysis. Biomed Res Int 2014, 208016.
38. Barker, T, Henriksen, VT, Rogers, VE, et al. (2014) Vitamin D deficiency associates with γ-tocopherol and quadriceps weakness but not inflammatory cytokines in subjects with knee osteoarthritis. Redox Biology 2, 466474.
39. Wootton, AM (2005) Improving the measurement of 25-hydroxyvitamin D. Clin Biochem Rev 26, 3336.
40. Holick, MF (2009) Vitamin D status: measurement, interpretation, and clinical application. Ann Epidemiol 19, 7378.
41. Vukic, M, Neme, A, Seuter, S, et al. (2015) Relevance of vitamin D receptor target genes for monitoring the vitamin D responsiveness of primary human cells. PLOS ONE 10, e0124339.
42. Carlberg, C, Seuter, S, de Mello, VDF, et al. (2013) Primary vitamin D target genes allow a categorization of possible benefits of vitamin D3 supplementation. PLOS ONE 8, e71042.

Keywords

Vitamin D supplementation and inflammatory and metabolic biomarkers in patients with knee osteoarthritis: post hoc analysis of a randomised controlled trial

  • Shuang Zheng (a1), Bing Wang (a2), Weiyu Han (a1), Zhaohua Zhu (a1), Xia Wang (a1), Xingzhong Jin (a1), Benny Antony (a1), Flavia Cicuttini (a2), Anita Wluka (a2), Tania Winzenberg (a1) (a3), Dawn Aitken (a1), Leigh Blizzard (a1), Graeme Jones (a1) and Changhai Ding (a1) (a2) (a4)...
  • Please note a correction has been issued for this article.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: