Skip to main content Accessibility help
×
Home

TaqIB polymorphism in the cholesteryl ester transfer protein (CETP) gene influences lipid responses to the consumption of kiwifruit in hypercholesterolaemic men

  • Cheryl S. Gammon (a1), Anne M. Minihane (a2), Rozanne Kruger (a1), Cathryn A. Conlon (a1), Pamela R. von Hurst (a1), Beatrix Jones (a3) and Welma Stonehouse (a1)...

Abstract

Fruit and vegetables are key elements of a cardioprotective diet, but benefits on plasma lipids, especially HDL-cholesterol (HDL-C), are inconsistent both within and between studies. In the present study, we investigated whether four selected HDL-C-related polymorphisms (cholesteryl ester transfer protein (CETP) Taq1B, APOA1 − 75G/A, hepatic lipase (LIPC) − 514C → T, and endothelial lipase (LIPG) I24582) modulate the plasma lipid response to a kiwifruit intervention. This is a retrospective analysis of data collected during a 12-week randomised controlled cross-over trial. A total of eighty-five hypercholesterolaemic men completed a 4-week healthy diet run-in period before being randomised to one of two 4-week intervention sequences of two green kiwifruit/d plus healthy diet (kiwifruit intervention) or healthy diet alone (control intervention). The measurement of anthropometric parameters and collection of fasting blood samples were carried out at baseline 1 and after the run-in (baseline 2) and intervention periods. At baseline 2, B1/B1 homozygotes of the CETP Taq1B gene had significantly higher total cholesterol:HDL-C, TAG:HDL-C, and apoB:apoA1 ratios and small-dense LDL concentrations than B2 carriers. A significant CETP Taq1B genotype × intervention interaction was observed for the TAG:HDL-C ratio (P= 0·03). B1/B1 homozygotes had a significantly lower TAG:HDL-C ( − 0·23 (sd 0·58) mmol/l; P= 0·03) ratio after the kiwifruit intervention than after the control intervention, whereas the ratio of B2 carriers was not affected. The lipid response was not affected by other gene polymorphisms. In conclusion, the significant decrease in the TAG:HDL-C ratio in B1/B1 homozygotes suggests that regular inclusion of green kiwifruit as part of a healthy diet may improve the lipid profiles of hypercholesterolaemic men with this genotype.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      TaqIB polymorphism in the cholesteryl ester transfer protein (CETP) gene influences lipid responses to the consumption of kiwifruit in hypercholesterolaemic men
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      TaqIB polymorphism in the cholesteryl ester transfer protein (CETP) gene influences lipid responses to the consumption of kiwifruit in hypercholesterolaemic men
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      TaqIB polymorphism in the cholesteryl ester transfer protein (CETP) gene influences lipid responses to the consumption of kiwifruit in hypercholesterolaemic men
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: C. S. Gammon, fax +64 9 443 9640, email c.gammon@massey.ac.nz

References

Hide All
1 WHO (2011) Cardiovascular Diseases Fact Sheet no. 317 . Geneva: World Health Organization.
2 Vergeer, M, Holleboom, AG, Kastelein, JJP, et al. (2010) The HDL hypothesis: does high-density lipoprotein protect from atherosclerosis? J Lipid Res 51, 20582073.
3 Hansel, B, Kontush, A, Giral, P, et al. (2006) One third of the variability in HDL-cholesterol level in a large dyslipidaemic population is predicted by age, sex and triglyceridaemia: The Paris La Pitie Study. Curr Med Res Opin 22, 11491160.
4 Musunuru, K (2010) Atherogenic dyslipidemia: cardiovascular risk and dietary intervention. Lipids 45, 907914.
5 Bove, M, Cicero, AFG, Manca, M, et al. (2007) Sources of variability of plasma HDL-cholesterol levels. Future Lipidol 2, 557569.
6 Heller, DA, de Faire, U, Pedersen, NL, et al. (1993) Genetic and environmental influences on serum lipid levels in twins. N Engl J Med 328, 11501156.
7 Peloso, GM, Demissie, S, Collins, D, et al. (2010) Common genetic variation in multiple metabolic pathways influences susceptibility to low HDL-cholesterol and coronary heart disease. J Lipid Res 51, 35243532.
8 Chong, MF, Macdonald, R & Lovegrove, JA (2010) Fruit polyphenols and CVD risk: a review of human intervention studies. Br J Nutr 104, Suppl. 3, S28S39.
9 Dauchet, L, Amouyel, P, Dallongeville, J, et al. (2009) Fruits, vegetables and coronary heart disease. Nat Rev Cardiol 6, 599608.
10 Gammon, CS, Kruger, R, Minihane, AM, et al. (2013) Kiwifruit consumption favourably affects plasma lipids in a randomised controlled trial in hypercholesterolaemic men. Br J Nutr 109, 22082218.
11 de Grooth, GJ, Klerkx, AH, Stroes, ES, et al. (2004) A review of CETP and its relation to atherosclerosis. J Lipid Res 45, 19671974.
12 Boekholdt, SM, Sacks, FM, Jukema, JW, et al. (2005) Cholesteryl ester transfer protein TaqIB variant, high-density lipoprotein cholesterol levels, cardiovascular risk, and efficacy of pravastatin treatment: individual patient meta-analysis of 13,677 subjects. Circulation 111, 278287.
13 Thompson, A, Di Angelantonio, E, Sarwar, N., et al. (2008) Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA 299, 27772788.
14 Mank-Seymour, AR, Durham, KL, Thompson, JF, et al. (2004) Association between single-nucleotide polymorphisms in the endothelial lipase (LIPG) gene and high-density lipoprotein cholesterol levels. Biochim Biophys Acta 1636, 4046.
15 Nettleton, JA, Steffen, LM, Ballantyne, CM, et al. (2007) Associations between HDL-cholesterol and polymorphisms in hepatic lipase and lipoprotein lipase genes are modified by dietary fat intake in African American and White adults. Atherosclerosis 194, e131e140.
16 Ordovas, JM, Corella, D, Demissie, S, et al. (2002) Dietary fat intake determines the effect of a common polymorphism in the hepatic lipase gene promoter on high-density lipoprotein metabolism: evidence of a strong dose effect in this gene–nutrient interaction in the Framingham Study. Circulation 106, 23152321.
17 Zhang, C, Lopez-Ridaura, R, Rimm, EB, et al. (2005) Interactions between the − 514C->T polymorphism of the hepatic lipase gene and lifestyle factors in relation to HDL concentrations among US diabetic men. Am J Clin Nutr 81, 14291435.
18 Juo, SH, Wyszynski, DF, Beaty, TH, et al. (1999) Mild association between the A/G polymorphism in the promoter of the apolipoprotein A-I gene and apolipoprotein A-I levels: a meta-analysis. Am J Med Genet 82, 235241.
19 Ruano, G, Seip, RL, Windemuth, A, et al. (2006) Apolipoprotein A1 genotype affects the change in high density lipoprotein cholesterol subfractions with exercise training. Atherosclerosis 185, 6569.
20 Souverein, OW, Jukema, JW, Boekholdt, SM, et al. (2005) Polymorphisms in APOA1 and LPL genes are statistically independently associated with fasting TG in men with CAD. Eur J Hum Genet 13, 445451.
21 Wallace, TM, Levy, JC & Matthews, DR (2004) Use and abuse of HOMA modeling. Diabetes Care 27, 14871495.
22 Stampfer, MJ, Sacks, FM, Salvini, S, et al. (1991) A prospective study of cholesterol, apolipoproteins, and the risk of myocardial infarction. N Engl J Med 325, 373381.
23 Do, HQ, Nazih, H, Luc, G, et al. (2009) Influence of cholesteryl ester transfer protein, peroxisome proliferator-activated receptor alpha, apolipoprotein E, and apolipoprotein A-I polymorphisms on high-density lipoprotein cholesterol, apolipoprotein A-I, lipoprotein A-I, and lipoprotein A-I:A-II concentrations: the Prospective Epidemiological Study of Myocardial Infarction study. Metabolism 58, 283289.
24 Smith, CE, Arnett, DK, Tsai, MY, et al. (2009) Physical inactivity interacts with an endothelial lipase polymorphism to modulate high density lipoprotein cholesterol in the GOLDN study. Atherosclerosis 206, 500504.
25 Ordovas, JM, Corella, D, Cupples, LA, et al. (2002) Polyunsaturated fatty acids modulate the effects of the APOA1 G-A polymorphism on HDL-cholesterol concentrations in a sex-specific manner: the Framingham Study. Am J Clin Nutr 75, 3846.
26 Barter, PJ, Brewer, HB Jr, Chapman, MJ, et al. (2003) Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler Thromb Vasc Biol 23, 160167.
27 Chapman, MJ, Le Goff, W, Guerin, M, et al. (2010) Cholesteryl ester transfer protein: at the heart of the action of lipid-modulating therapy with statins, fibrates, niacin, and cholesteryl ester transfer protein inhibitors. Eur Heart J 31, 149164.
28 Charles, MA & Kane, JP (2012) New molecular insights into CETP structure and function: a review. J Lipid Res 53, 14511458.
29 Boekholdt, SM & Thompson, JF (2003) Natural genetic variation as a tool in understanding the role of CETP in lipid levels and disease. J Lipid Res 44, 10801093.
30 Dullaart, RPF & Sluiter, WJ (2008) Common variation in the CETP gene and the implications for cardiovascular disease and its treatment: an updated analysis. Pharmacogenomics 9, 747763.
31 Millan, J, Pinto, X, Munoz, A, et al. (2009) Lipoprotein ratios: physiological significance and clinical usefulness in cardiovascular prevention. Vasc Health Risk Manag 5, 757765.
32 Cordero, A, Andres, E, Ordonez, B, et al. (2009) Usefulness of triglycerides-to-high-density lipoprotein cholesterol ratio for predicting the first coronary event in men. Am J Cardiol 104, 13931397.
33 Miller, M, Stone, NJ, Ballantyne, C, et al. (2011) Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 123, 22922333.
34 Lam, CK, Zhang, Z, Yu, H, et al. (2008) Apple polyphenols inhibit plasma CETP activity and reduce the ratio of non-HDL to HDL cholesterol. Mol Nutr Food Res 52, 950958.
35 Fiorentino, A, D'Abrosca, B, Pacifico, S, et al. (2009) Identification and assessment of antioxidant capacity of phytochemicals from kiwi fruits. J Agric Food Chem 57, 41484155.
36 Latocha, P, Krupa, T, Wolosiak, R, et al. (2010) Antioxidant activity and chemical difference in fruit of different Actinidia sp. Int J Food Sci Nutr 61, 381394.
37 Tarascou, I, Souquet, JM, Mazauric, JP, et al. (2010) The hidden face of food phenolic composition. Arch Biochem Biophys 501, 1622.
38 Rideout, TC (2011) Getting personal: considering variable interindividual responsiveness to dietary lipid-lowering therapies. Curr Opin Lipidol 22, 3742.
39 Minihane, AM (2013) The genetic contribution to disease risk and variability in response to diet: where is the hidden heritability? Proc Nutr Soc 72, 4047.

Keywords

Type Description Title
WORD
Supplementary materials

Gammon Supplementary Material
Table

 Word (23 KB)
23 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed