Skip to main content Accessibility help
×
Home

Synergistic associations of physical activity and diet quality on cardiometabolic risk factors in overweight and obese postmenopausal women

  • Marie-Eve Lavoie (a1) (a2), May Faraj (a1) (a2) (a3), Irene Strychar (a1) (a3) (a4), Éric Doucet (a5), Martin Brochu (a6) (a7), Jean-Marc Lavoie (a8) and Rémi Rabasa-Lhoret (a1) (a2) (a3)...

Abstract

Healthy diet and physical activity are associated with a lower cardiometabolic risk (CMR). Little is known about whether they interact to improve CMR. The purpose of the present study was to determine the synergistic associations of diet quality and physical activity energy expenditure (PAEE) on CMR factors. The present study was an a posteriori analysis of two cross-sectional studies on 124 inactive non-diabetic postmenopausal women with a BMI ≥ 27 kg/m2. The following factors were measured: diet quality (assessed by the Canadian Healthy Eating Index (C-HEI) from a 3 d food record); PAEE (doubly labelled water); body composition (dual-energy X-ray absorptiometry, computed tomography scan); lipoprotein profile (total, HDL- and LDL-cholesterol (HDL-C and LDL-C), non-HDL-C, total cholesterol:HDL-C, TAG, apoA1, apoB, apoA1:apoB and LDL-C:apoB); insulin sensitivity (homeostasis model assessment of insulin resistance and hyperinsulinaemic–euglycaemic clamp); inflammatory markers (high-sensitivity C-reactive protein (hs-CRP), haptoglobin, orosomucoid, IL-6 and leucocyte count). The association of the interaction PAEE × C-HEI and CMR factors was evaluated by hierarchical regressions. Fat mass-adjusted ANCOVA determined the interaction between PAEE and the C-HEI. In hierarchical regressions, the interaction PAEE × C-HEI was a correlate of more favourable values of HDL-C, apoB, apoA1:apoB and LDL-C:apoB ratios, and hs-CRP, while only PAEE was a negative correlate of haptoglobin. Compared with those in the low-PAEE/low-C-HEI group, women in the high-PAEE/high-C-HEI group had 10 % higher HDL-C, 13 % lower apoB, 11 % larger LDL particles and 28 % lower hs-CRP concentrations (P< 0·05). PAEE and the C-HEI have a synergistic association with the CMR profile. These results support the integration of both diet quality and physical activity in the management of CMR.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Synergistic associations of physical activity and diet quality on cardiometabolic risk factors in overweight and obese postmenopausal women
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Synergistic associations of physical activity and diet quality on cardiometabolic risk factors in overweight and obese postmenopausal women
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Synergistic associations of physical activity and diet quality on cardiometabolic risk factors in overweight and obese postmenopausal women
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr R. Rabasa-Lhoret, fax +1 514 987 5670, E-mail: remi.rabasa-lhoret@ircm.qc.ca

References

Hide All
1Zalesin, KC, Franklin, BA, Miller, WM, et al. (2011) Impact of obesity on cardiovascular disease. Med Clin North Am 95, 919937.
2Cardiometabolic Risk Working Group: Executive Committee Leiter, LA, Fitchett, DH, et al. (2011) Cardiometabolic risk in Canada: a detailed analysis and position paper by the cardiometabolic risk working group. Can J Cardiol 27, e1e33.
3Du, H & Feskens, E (2010) Dietary determinants of obesity. Acta Cardiol 65, 377386.
4Lichtenstein, AH, Appel, LJ, Brands, M, et al. (2006) Summary of American Heart Association Diet and Lifestyle Recommendations revision 2006. Arterioscler Thromb Vasc Biol 26, 21862191.
5Pai, JK, Hankinson, SE, Thadhani, R, et al. (2006) Moderate alcohol consumption and lower levels of inflammatory markers in US men and women. Atherosclerosis 186, 113120.
6Liese, AD, Weis, KE, Schulz, M, et al. (2009) Food intake patterns associated with incident type 2 diabetes: the Insulin Resistance Atherosclerosis Study. Diabetes Care 32, 263268.
7Mozaffarian, D, Pischon, T, Hankinson, SE, et al. (2004) Dietary intake of trans fatty acids and systemic inflammation in women. Am J Clin Nutr 79, 606612.
8Malik, VS, Popkin, BM, Bray, GA, et al. (2010) Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care 33, 24772483.
9Mozaffarian, D, Kumanyika, SK, Lemaitre, RN, et al. (2003) Cereal, fruit, and vegetable fiber intake and the risk of cardiovascular disease in elderly individuals. JAMA 289, 16591666.
10Fung, TT, McCullough, ML, Newby, PK, et al. (2005) Diet-quality scores and plasma concentrations of markers of inflammation and endothelial dysfunction. Am J Clin Nutr 82, 163173.
11Wolongevicz, DM, Zhu, L, Pencina, MJ, et al. (2010) Diet quality and obesity in women: the Framingham Nutrition Studies. Br J Nutr 103, 12231229.
12Kennedy, ET, Ohls, J, Carlson, S, et al. (1995) The Healthy Eating Index: design and applications. J Am Diet Assoc 95, 11031108.
13Ford, ES, Mokdad, AH & Liu, S (2005) Healthy Eating Index and C-reactive protein concentration: findings from the National Health and Nutrition Examination Survey III, 1988–1994. Eur J Clin Nutr 59, 278283.
14Kant, AK & Graubard, BI (2005) A comparison of three dietary pattern indexes for predicting biomarkers of diet and disease. J Am Coll Nutr 24, 294303.
15Kraus, WE, Houmard, JA, Duscha, BD, et al. (2002) Effects of the amount and intensity of exercise on plasma lipoproteins. N Engl J Med 347, 14831492.
16Lavoie, ME, Rabasa-Lhoret, R, Doucet, E, et al. (2010) Association between physical activity energy expenditure and inflammatory markers in sedentary overweight and obese women. Int J Obes (Lond) 34, 13871395.
17Karelis, AD, Lavoie, ME, Messier, V, et al. (2008) Relationship between the metabolic syndrome and physical activity energy expenditure: a MONET study. Appl Physiol Nutr Metab 33, 309314.
18Hamman, RF, Wing, RR, Edelstein, SL, et al. (2006) Effect of weight loss with lifestyle intervention on risk of diabetes. Diabetes Care 29, 21022107.
19Manini, TM, Everhart, JE, Patel, KV, et al. (2006) Daily activity energy expenditure and mortality among older adults. JAMA 296, 171179.
20Joosten, MM, Grobbee, DE, van der, ADL, et al. (2010) Combined effect of alcohol consumption and lifestyle behaviors on risk of type 2 diabetes. Am J Clin Nutr 91, 17771783.
21Brochu, M, Malita, MF, Messier, V, et al. (2009) Resistance training does not contribute to improving the metabolic profile after a 6-month weight loss program in overweight and obese postmenopausal women. J Clin Endocrinol Metab 94, 32263233.
22Shatenstein, B, Nadon, S, Godin, C, et al. (2005) Diet quality of Montreal-area adults needs improvement: estimates from a self-administered food frequency questionnaire furnishing a dietary indicator score. J Am Diet Assoc 105, 12511260.
23St-Onge, M, Mignault, D, Allison, DB, et al. (2007) Evaluation of a portable device to measure daily energy expenditure in free-living adults. Am J Clin Nutr 85, 742749.
24Black, AE, Coward, WA, Cole, TJ, et al. (1996) Human energy expenditure in affluent societies: an analysis of 574 doubly-labelled water measurements. Eur J Clin Nutr 50, 7292.
25Reed, GW & Hill, JO (1996) Measuring the thermic effect of food. Am J Clin Nutr 63, 164169.
26Schectman, G, Patsches, M & Sasse, EA (1996) Variability in cholesterol measurements: comparison of calculated and direct LDL cholesterol determinations. Clin Chem 42, 732737.
27Sniderman, A, Vu, H & Cianflone, K (1991) Effect of moderate hypertriglyceridemia on the relation of plasma total and LDL apo B levels. Atherosclerosis 89, 109116.
28Matthews, DR, Hosker, JP, Rudenski, AS, et al. (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412419.
29Karelis, AD, Faraj, M, Bastard, JP, et al. (2005) The metabolically healthy but obese individual presents a favorable inflammation profile. J Clin Endocrinol Metab 90, 41454150.
30Jialal, I, Devaraj, S & Venugopal, SK (2004) C-reactive protein: risk marker or mediator in atherothrombosis? Hypertension 44, 611.
31Faraj, M, Messier, L, Bastard, JP, et al. (2006) Apolipoprotein B: a predictor of inflammatory status in postmenopausal overweight and obese women. Diabetologia 49, 16371646.
32Strychar, I, Lavoie, ME, Messier, L, et al. (2009) Anthropometric, metabolic, psychosocial, and dietary characteristics of overweight/obese postmenopausal women with a history of weight cycling: a MONET (Montreal Ottawa New Emerging Team) study. J Am Diet Assoc 109, 718724.
33Black, AE & Cole, TJ (2000) Within- and between-subject variation in energy expenditure measured by the doubly-labelled water technique: implications for validating reported dietary energy intake. Eur J Clin Nutr 54, 386394.
34Karelis, AD, Lavoie, ME, Fontaine, J, et al. (2010) Anthropometric, metabolic, dietary and psychosocial profiles of underreporters of energy intake: a doubly labeled water study among overweight/obese postmenopausal women – a Montreal Ottawa New Emerging Team study. Eur J Clin Nutr 64, 6874.
35Goodpaster, BH, Delany, JP, Otto, AD, et al. (2010) Effects of diet and physical activity interventions on weight loss and cardiometabolic risk factors in severely obese adults: a randomized trial. JAMA 304, 17951802.
36Knowler, WC, Barrett-Connor, E, Fowler, SE, et al. (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346, 393403.
37Tuomilehto, J, Lindstrom, J, Eriksson, JG, et al. (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344, 13431350.
38Belalcazar, LM, Reboussin, DM, Haffner, SM, et al. (2010) A 1-year lifestyle intervention for weight loss in individuals with type 2 diabetes reduces high C-reactive protein levels and identifies metabolic predictors of change: from the Look AHEAD (Action for Health in Diabetes) study. Diabetes Care 33, 22972303.
39Laaksonen, DE, Lindstrom, J, Lakka, TA, et al. (2005) Physical activity in the prevention of type 2 diabetes: the Finnish diabetes prevention study. Diabetes 54, 158165.
40Weinstein, SJ, Vogt, TM & Gerrior, SA (2004) Healthy Eating Index scores are associated with blood nutrient concentrations in the third National Health And Nutrition Examination Survey. J Am Diet Assoc 104, 576584.
41Hann, CS, Rock, CL, King, I, et al. (2001) Validation of the Healthy Eating Index with use of plasma biomarkers in a clinical sample of women. Am J Clin Nutr 74, 479486.
42Rizzo, M, Berneis, K, Corrado, E, et al. (2006) The significance of low-density-lipoproteins size in vascular diseases. Int Angiol 25, 49.
43Cooney, MT, Dudina, A, De Bacquer, D, et al. (2009) HDL cholesterol protects against cardiovascular disease in both genders, at all ages and at all levels of risk. Atherosclerosis 206, 611616.
44Muntner, P, Lee, F & Astor, BC (2011) Association of high-density lipoprotein cholesterol with coronary heart disease risk across categories of low-density lipoprotein cholesterol: the atherosclerosis risk in communities study. Am J Med Sci 341, 173180.
45Walldius, G & Jungner, I (2004) Apolipoprotein B and apolipoprotein A–I: risk indicators of coronary heart disease and targets for lipid-modifying therapy. J Intern Med 255, 188205.
46Walldius, G, Jungner, I, Aastveit, AH, et al. (2004) The apoB/apoA-I ratio is better than the cholesterol ratios to estimate the balance between plasma proatherogenic and antiatherogenic lipoproteins and to predict coronary risk. Clin Chem Lab Med 42, 13551363.
47Yusuf, S, Hawken, S, Ounpuu, S, et al. (2004) Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case–control study. Lancet 364, 937952.
48Levine, JA (2007) Nonexercise activity thermogenesis-liberating the life-force. J Intern Med 262, 273287.
49Guo, X, Warden, BA, Paeratakul, S, et al. (2004) Healthy Eating Index and obesity. Eur J Clin Nutr 58, 15801586.
50Tande, DL, Magel, R & Strand, BN (2010) Healthy Eating Index and abdominal obesity. Public Health Nutr 13, 208214.
51Bassuk, SS & Manson, JE (2005) Epidemiological evidence for the role of physical activity in reducing risk of type 2 diabetes and cardiovascular disease. J Appl Physiol 99, 11931204.
52Drewnowski, A, Fiddler, EC, Dauchet, L, et al. (2009) Diet quality measures and cardiovascular risk factors in France: applying the Healthy Eating Index to the SU.VI.MAX study. J Am Coll Nutr 28, 2229.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Lavoie supplementary material
Appendix

 Unknown (28 KB)
28 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed