Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-lzpzj Total loading time: 0.286 Render date: 2021-02-26T22:53:23.991Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Studies on the flow of zinc, cobalt, copper and manganese along the digestive tract of sheep given fresh perennial ryegrass, or white or red clover

Published online by Cambridge University Press:  09 March 2007

N. D. Grace
Affiliation:
Applied Biochemistry Division, DSIR, Palmerston North, New Zealand
Rights & Permissions[Opens in a new window]

Abstract

1. Sheep fitted with a rumen fistula and either a re-entrant cannula at the proximal duodenum or a re-entrant cannula at the terminal ileum were given twice daily 480–520 g dry matter as fresh perennial ryegrass, or white or red clover. Flows of digesta were corrected to 100% recovery of chromic oxide.

2. The quantities (g/24 h) of zinc and cobalt leaving the stomach were significantly greater than those in the food. No significant change was found in the quantities of copper and manganese. Significantly smaller quantities of Co (all three diets) and Zn (all diets except red clover) left the small intestine than those which entered this region. No significant differences in the quantities of Cu and Mn entering and leaving the small intestine were found. Significantly smaller quantities of Zn, Co, Cu and Mn were excreted in the faeces than entered the large intestine.

3. From the flow results it was determined that there was a significant net secretion of Zn and Co in the stomach, and a significant net absorption of Zn (except with the red-clover diet) and Co from the small intestine, and of Zn, Co, Cu and Mn from the large intestine.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1975

References

Beever, R. E., Thomson, D. J., Pfeffer, E. & Armstrong, D. G. (1971). Br. J. Nutr. 26, 123.CrossRefGoogle Scholar
Bertinchamps, A. J., Miller, S. T. & Cotzias, G. C. (1966). Am. J. Physiol. 211, 217.Google Scholar
Brown, G. F., Armstrong, D. G. & MacRae, J. C. (1968). Br. vet. J. 124, 78.CrossRefGoogle Scholar
Cartwright, G. E. & Wintrobe, M. M. (1964). Am. J. clin. Nutr. 14, 224.Google Scholar
Comar, C. L., Davis, G. K. & Taylor, R. F. (1946). Archs Biochem. 9, 149.Google Scholar
Engel, R. W., Price, N. O. & Miller, R. F. (1967). J. Nutr. 92, 197.Google Scholar
Field, A. C. & Purves, D. (1964). Proc. Nutr. Soc. 23, xxiv.Google Scholar
Fleming, G. A. (1965). Outl. Agric. 4, 270.CrossRefGoogle Scholar
Grace, N. D. & MacRae, J. C. (1972). Br. J. Nutr. 27, 51.CrossRefGoogle Scholar
Harp, M. J. & Scoular, F. I. (1952). J. Nutr. 47, 67.Google Scholar
Healy, W. B. (1968). N. Z. Jl agric. Res. 11, 487.CrossRefGoogle Scholar
Healy, W. B. (1972). Proc. N. Z. Grassld Ass. 34, 84.Google Scholar
Hedrich, M. F., Elliot, J. M. & Lowe, J. E. (1973). J. Nutr. 103, 1646.Google Scholar
Hiers, J. M., Miller, W. J. & Blackmon, D. M. (1968). J. Dairy Sci. 51, 730.CrossRefGoogle Scholar
Kay, R. N. B. & Pfeffer, E. (1970). In Physiology of Digestion and Metabolism in the Ruminant, p. 390 [Phillipson, A. T., editor]. Newcastle upon Tyne: Oriel Press.Google Scholar
MacRae, J. C. & Armstrong, D. G. (1969). Br. J. Nutr. 23, 15.CrossRefGoogle Scholar
O'Dell, B. L. & Campbell, B. J. (1970). In Comprehensive Biochemistry, Vol. 21, p. 179 [Florkin, M. and Stotz, E. H., editors]. Amsterdam: Elsevier Publishing Company.Google Scholar
Pekas, J. C. (1966). Am.J. Physiol. 211, 407.Google Scholar
Perkin-Elmer, (1971). Analytical Methods for Atomic Absorption Spectrophotometry. Norwalk, Connecticut: Perkin-Elmer.Google Scholar
Rigg, T. & Askew, H. O. (1934). Emp. J. exp. Agric. 2, 1.Google Scholar
Sheline, G. E., Chaikoff, I. L., Jones, H. B. & Montgomery, M. L. (1943). J. biol. Chem. 147, 409.Google Scholar
Ulyatt, M. J. & MacRae, J. C. (1974). J. agric. Sci., Camb. 82, 295.CrossRefGoogle Scholar
Underwood, E. J. (1971). Trace Elements in Human and Animal Nutrition, 3rd ed.New York and London: Academic Press.Google Scholar
Van Ravesteyn, A. H. (1944). Acta med. scand. 118, 163.CrossRefGoogle Scholar
Watson, R. H. & Kastelic, J. (1967). Aust. J. biol. Sci. 20, 975.Google Scholar
Williams, C. H., David, D. J. & lismaa, O. (1962). J. agric. Sci., Camb. 59, 381.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 126 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th February 2021. This data will be updated every 24 hours.

Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Studies on the flow of zinc, cobalt, copper and manganese along the digestive tract of sheep given fresh perennial ryegrass, or white or red clover
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Studies on the flow of zinc, cobalt, copper and manganese along the digestive tract of sheep given fresh perennial ryegrass, or white or red clover
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Studies on the flow of zinc, cobalt, copper and manganese along the digestive tract of sheep given fresh perennial ryegrass, or white or red clover
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *