Skip to main content Accessibility help
×
Home

Starch digestion kinetics and mechanisms of hydrolysing enzymes in growing pigs fed processed and native cereal-based diets

  • Bianca M. J. Martens (a1) (a2) (a3), Thomas Flécher (a1), Sonja de Vries (a1), Henk A. Schols (a2), Erik M. A. M. Bruininx (a1) (a3) and Walter J. J. Gerrits (a1)...

Abstract

This study aimed to examine in vivo starch digestion kinetics and to unravel the mechanisms of starch hydrolysing enzymes. Ninety pigs (23 (sd 2·1) kg body weight) were assigned to one of nine treatments in a 3×3 factorial arrangement, with starch source (barley, maize, high-amylose (HA) maize) and form (isolated, within cereal matrix, extruded) as factors. We determined starch digestion coefficients (DC), starch breakdown products and digesta retention times in four small-intestinal segments (SI1–4). Starch digestion in SI2 of pigs fed barley and maize, exceeded starch digestion of pigs fed HA maize by 0·20–0·33 DC units (P<0·01). In SI3–4, barley starch were completely digested, whereas the cereal matrix of maize hampered digestion and generated 16 % resistant starch in the small intestine (P<0·001). Extrusion increased the DC of maize and HA maize starch throughout the small intestine but not that of barley (P<0·05). Up to 25 % of starch residuals in the proximal small intestine of pigs was present as glucose and soluble α(1–4) maltodextrins. The high abundance of glucose, maltose and maltotriose in the proximal small intestine indicates activity of brush-border enzymes in the intestinal lumen, which is exceeded by α-amylase activity. Furthermore, we found that in vivo starch digestion exceeded our in vitro predictions for rapidly digested starch, which indicates that the role of the stomach on starch digestion is currently underestimated. Consequently, in vivo glucose release of slowly digestible starch is less gradual than expected, which challenges the prediction quality of the in vitro assay.

Copyright

Corresponding author

*Corresponding author: Walter Gerrits, email walter.gerrits@wur.nl

References

Hide All
1. Regmi, PR, van Kempen, TA, Matte, JJ, et al. (2011) Starch with high amylose and low in vitro digestibility increases short-chain fatty acid absorption, reduces peak insulin secretion, and modulates incretin secretion in pigs. J Nutr 141, 398405.
2. Da Silva, CS, Bosch, G, Bolhuis, J, et al. (2014) Effects of alginate and resistant starch on feeding patterns, behaviour and performance in ad libitum-fed growing pigs. Animal 8, 19171927.
3. Bolhuis, J, van den Brand, H, Staals, S, et al. (2008) Effects of fermentable starch and straw-enriched housing on energy partitioning of growing pigs. Animal 2, 10281036.
4. van den Borne, JJGC, Schrama, JW, Heetkamp, MJW, et al. (2007) Synchronising the availability of amino acids and glucose increases protein retention in pigs. Animal 1, 666674.
5. Weurding, R, Enting, H & Verstegen, M (2003) The relation between starch digestion rate and amino acid level for broiler chickens. Poult Sci 82, 279284.
6. de Vries, S, Gerrits, WJ, Kabel, MA, et al. (2016) β-Glucans and resistant starch alter the fermentation of recalcitrant fibers in growing pigs. PLOS ONE 11, e0167624.
7. Tester, RF, Karkalas, J & Qi, X (2004) Starch—composition, fine structure and architecture. J Cereal Sci 39, 151165.
8. Jane, J, Chen, Y, Lee, L, et al. (1999) Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem 76, 629637.
9. Fannon, JE, Hauber, RJ & BeMiller, JN (1992) Surface pores of starch granules. Cereal Chem 69, 284288.
10. Jiang, H, Jane, JL, Acevedo, D, et al. (2010) Variations in starch physicochemical properties from a generation-means analysis study using amylomaize V and VII parents. J Agric Food Chem 58, 56335639.
11. Martens, BMJ, Gerrits, WJ, Bruininx, EMAM, et al. (2018) Amylopectin structure and crystallinity explains variation in digestion kinetics of starches across botanic sources in an in vitro pig model. J Anim Sci Biotechnol 9, 91103.
12. Giuberti, G, Gallo, A & Masoero, F (2012) Plasma glucose response and glycemic indices in pigs fed diets differing in in vitro hydrolysis indices. Animal 6, 10681076.
13. Chandra, GS, Proudlove, MO & Baxter, ED (1999) The structure of barley endosperm – an important determinant of malt modification. J Sci Food Agric 79, 3746.
14. Dombrink-Kurtzman, M & Bietz, J (1993) Zein composition in hard and soft endosperm of maize. Cereal Chem 70, 105108.
15. Knudsen, KB (2001) The nutritional significance of “dietary fibre” analysis. Anim Feed Sci Technol 90, 320.
16. Abdollahi, M, Ravindran, V, Wester, T, et al. (2010) Influence of conditioning temperature on performance, apparent metabolisable energy, ileal digestibility of starch and nitrogen and the quality of pellets, in broiler starters fed maize-and sorghum-based diets. Anim Feed Sci Technol 162, 106115.
17. Rojas, O, Vinyeta, E & Stein, H (2016) Effects of pelleting, extrusion, or extrusion and pelleting on energy and nutrient digestibility in diets containing different levels of fiber and fed to growing pigs. J Anim Sci 94, 19511960.
18. Knudsen, KEB, Steenfeldt, S, Hedemann, MS, et al. (2006) In vivo methods to study the digestion of starch in pigs and poultry. Anim Feed Sci Technol 130, 114135.
19. van Kempen, TA, Regmi, PR, Matte, JJ, et al. (2010) In vitro starch digestion kinetics, corrected for estimated gastric emptying, predict portal glucose appearance in pigs. J Nutr 140, 12271233.
20. Englyst, HN, Kingman, SM & Cummings, JH (1992) Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr 46, S33S50.
21. Blok, M & Spek, J (2016) CVB Veevoedertabel 2016: chemische samenstellingen en nutritionele waarden van voedermiddelen: CVB Programma (CVB Feed Table 2016: Chemical Composition and Nutritional Value of Feedstuffs: CVB programme).
22. de Vries, S, Pustjens, AM, Kabel, MA, et al. (2013) Processing technologies and cell wall degrading enzymes to improve nutritional value of dried distillers grain with solubles for animal feed: an in vitro digestion study. J Agric Food Chem 61, 88218828.
23. International Organisation for Standardization (2018) ISO methods. http://www.iso.org (accessed July 2018).
24. van Bussel, W, Kerkhof, F, van Kessel, T, et al. (2010) Accurate determination of titanium as titanium dioxide for limited sample size digestibility studies of feed and food matrices by inductively coupled plasma optical emission spectrometry with real-time simultaneous internal standardization. At Spectrosc 31, 8188.
25. Williams, C, David, DJ & Iismaa, O (1962) The determination of chromic oxide in faeces samples by atomic absorption spectrophotometry. J Agric Sci 59, 381385.
26. Vries, Sd & Gerrits, WJJ (2018) The use of tracers or markers in digestion studies. In Feed Evaluation Science,pp. 275–294 [PJ Moughan and WH Hendriks, editors]. Wageningen: Wageningen Academic Publishers.
27. Kotb, A & Luckey, T (1972) Markers in nutrition. Nutr Abstr Rev 42, 813845.
28. Stroup, WW (1999) Mixed model procedures to assess power, precision, and sample size. In The Design of Experiments 1999 Proceedings of the Biopharmaceutical Section, pp. 15–24. Alexandria, VA: American Statistical Association.
29. Bird, AR, Vuaran, M, Brown, I, et al. (2007) Two high-amylose maize starches with different amounts of resistant starch vary in their effects on fermentation, tissue and digesta mass accretion, and bacterial populations in the large bowel of pigs. Br J Nutr 97, 134144.
30. Li, Y, Zhang, AR, Luo, HF, et al. (2015) In vitro and in vivo digestibility of corn starch for weaned pigs: effects of amylose:amylopectin ratio, extrusion, storage duration, and enzyme supplementation. J Anim Sci 93, 35123520.
31. Fouhse, JM, Gänzle, MG, Regmi, PR, et al. (2015) High amylose starch with low in vitro digestibility stimulates hindgut fermentation and has a bifidogenic effect in weaned pigs. J Nutr 145, 24642470.
32. Rojas, O & Stein, H (2015) Effects of reducing the particle size of corn grain on the concentration of digestible and metabolizable energy and on the digestibility of energy and nutrients in corn grain fed to growing pigs. Livest Sci 181, 187193.
33. Amaral, N, Amaral, L, Cantarelli, V, et al. (2015) Influence of maize particle size on the kinetics of starch digestion in the small intestine of growing pigs. Anim Prod Sci 55, 12501254.
34. Dhital, S, Warren, FJ, Butterworth, PJ, et al. (2017) Mechanisms of starch digestion by α-amylase – structural basis for kinetic properties. Crit Rev Food Sci Nutr 57, 875892.
35. de Vries, S, Pustjens, AM, Schols, HA, et al. (2012) Improving digestive utilization of fiber-rich feedstuffs in pigs and poultry by processing and enzyme technologies: a review. Anim Feed Sci Technol 178, 123138.
36. Sun, T, Laerke, HN, Jorgensen, H, et al. (2006) The effect of extrusion cooking of different starch sources on the in vitro and in vivo digestibility in growing pigs. Anim Feed Sci Technol 131, 6685.
37. Li, M, Hasjim, J, Xie, F, et al. (2014) Shear degradation of molecular, crystalline, and granular structures of starch during extrusion. Starch/Stärke 66, 595605.
38. Liu, W-C, Halley, PJ & Gilbert, RG (2010) Mechanism of degradation of starch, a highly branched polymer, during extrusion. Macromolecules 43, 28552864.
39. Waigh, TA, Gidley, MJ, Komanshek, BU, et al. (2000) The phase transformations in starch during gelatinisation: a liquid crystalline approach. Carbohydr Res 328, 165176.
40. Robyt, JF & French, D (1970) The action pattern of porcine pancreatic α-amylase in relationship to the substrate binding site of the enzyme. J Biol Chem 245, 39173927.
41. Hooton, D, Lentle, R, Monro, J, et al. (2015) The secretion and action of brush border enzymes in the mammalian small intestine. Rev Physiol Biochem Pharmacol 168, 59118.
42. Noah, L, Lecannu, G, David, A, et al. (1999) Digestion of starch and glycaemic response to mixed meals in pigs. Reprod Nutr Dev 39, 245254.
43. McConnell, RE & Tyska, MJ (2007) Myosin-1a powers the sliding of apical membrane along microvillar actin bundles. J Cell Biol 177, 671681.
44. McConnell, RE, Higginbotham, JN, Shifrin, DA, et al. (2009) The enterocyte microvillus is a vesicle-generating organelle. J Cell Biol 185, 12851298.
45. Evans, A & Thompson, DB (2004) Resistance to α-amylase digestion in four native high-amylose maize starches. Cereal Chem 81, 3137.
46. Brewer, LR, Cai, L & Shi, Y-C (2012) Mechanism and enzymatic contribution to in vitro test method of digestion for maize starches differing in amylose content. J Agric Food Chem 60, 43794387.
47. Al-Rabadi, GJS, Gilbert, RG & Gidley, MJ (2009) Effect of particle size on kinetics of starch digestion in milled barley and sorghum grains by porcine alpha-amylase. J Cereal Sci 50, 198204.
48. Asare, EK, Jaiswal, S, Maley, J, et al. (2011) Barley grain constituents, starch composition, and structure affect starch in vitro enzymatic hydrolysis. J Agric Food Chem 59, 4743-4754.
49. Shrestha, AK, Blazek, J, Flanagan, BM, et al. (2012) Molecular, mesoscopic and microscopic structure evolution during amylase digestion of maize starch granules. Carbohydr Polym 90, 2333.
50. Knudsen, KEB, Jensen, BB & Hansen, I (1993) Digestion of polysaccharides and other major components in the small and large intestine of pigs fed on diets consisting of oat fractions rich in β-d-glucan. Br J Nutr 70, 537556.
51. Hasjim, J, Lavau, GC, Gidley, MJ, et al. (2010) In vivo and in vitro starch digestion: are current in vitro techniques adequate? Biomacromolecules 11, 36003608.
52. Bohn, T, Carriere, F, Day, L, et al. (2018) Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models? Crit Rev Food Sci Nutr 58, 22392261.
53. Dhital, S, Lin, AH-M, Hamaker, BR, et al. (2013) Mammalian mucosal α-glucosidases coordinate with α-amylase in the initial starch hydrolysis stage to have a role in starch digestion beyond glucogenesis. PLOS ONE 8, e62546.
54. Ao, Z, Quezada-Calvillo, R, Sim, L, et al. (2007) Evidence of native starch degradation with human small intestinal maltase‐glucoamylase (recombinant). FEBS Lett 581, 23812388.
55. Zhang, G & Hamaker, BR (2009) Slowly digestible starch: concept, mechanism, and proposed extended glycemic index. Crit Rev Food Sci Nutr 49, 852867.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Martens et al. supplementary material
Martens et al. supplementary material 1

 Unknown (447 KB)
447 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed