Skip to main content Accessibility help
×
×
Home

Soluble urokinase plasminogen activator receptor is linearly associated with dietary quality and predicts mortality

  • Peter B. S. Törnkvist (a1), Thomas H. Haupt (a1), Line J. H. Rasmussen (a1), Steen Ladelund (a1), Ulla Toft (a2), Charlotta Pisinger (a2) and Jesper Eugen-Olsen (a1)...

Abstract

Chronic inflammation is associated with disease risk and mortality in the general population. Soluble urokinase plasminogen activator receptor (suPAR) is a stable marker of chronic inflammation, and a higher serum-concentration of suPAR is found in individuals with an unhealthy lifestyle such as smoking. This article investigates the association between suPAR and dietary quality measured with the dietary quality score (DQS). The DQS is an index of the overall quality of an individual’s dietary habits assessed through a self-administered FFQ. Furthermore, this article investigates the association of both suPAR and the DQS with CVD risk and mortality in the general Danish population. We analysed 5347 individuals aged 30–60 years from the Danish Inter99 study cohort. Multiple linear regression analyses showed a linear inverse association between the DQS and suPAR (P=0·0005). Cox regression analyses showed an 18 (95 % CI 9, 26) % increase in the risk of death from any cause with each 1 ng/ml increase in suPAR. We found no significant association between the DQS and the mortality (hazard ratio: 1·16, 95 % CI 0·79, 1·69). All analyses were adjusted for demographics and lifestyle factors. The association between the DQS and suPAR on the one hand and suPAR and mortality on the other supports the argument that low dietary quality may constitute a health risk through its influence on chronic inflammation. Future research should examine whether suPAR is modifiable through changes in dietary habits.

Copyright

Corresponding author

*Corresponding author: P. B. S. Törnkvist, email pt.forsk@posteo.dk

References

Hide All
1. Candore, G, Caruso, C, Jirillo, E, et al. (2010) Low grade inflammation as a common pathogenetic denominator in age-related diseases: novel drug targets for anti-ageing strategies and successful ageing achievement. Curr Pharm Des 16, 584596.
2. Minihane, AM, Vinoy, S, Russell, WR, et al. (2015) Low-grade inflammation, diet composition and health: current research evidence and its translation. Br J Nutr 114, 9991012.
3. Thuno, M, Macho, B & Eugen-Olsen, J (2009) suPAR: the molecular crystal ball. Dis Markers 27, 157172.
4. Eugen-Olsen, J, Andersen, O, Linneberg, A, et al. (2010) Circulating soluble urokinase plasminogen activator receptor predicts cancer, cardiovascular disease, diabetes and mortality in the general population. J Intern Med 268, 296308.
5. Persson, M, Engstrom, G, Bjorkbacka, H, et al. (2012) Soluble urokinase plasminogen activator receptor in plasma is associated with incidence of CVD. Results from the Malmo Diet and Cancer Study. Atherosclerosis 220, 502505.
6. Eugen-Olsen, J & Giamarellos-Bourboulis, EJ (2015) suPAR: the unspecific marker for disease presence, severity and prognosis. Int J Antimicrob Agents 46, Suppl. 1, S33S34.
7. Rasmussen, LJ, Ladelund, S, Haupt, TH, et al. (2016) Soluble urokinase plasminogen activator receptor (suPAR) in acute care: a strong marker of disease presence and severity, readmission and mortality. A retrospective cohort study. Emerg Med J 33, 769775.
8. Eugen-Olsen, J, Ladelund, S & Sorensen, LT (2016) Plasma suPAR is lowered by smoking cessation: a randomized controlled study. Eur J Clin Invest 46, 305311.
9. Haupt, TH, Kallemose, T, Ladelund, S, et al. (2014) Risk factors associated with serum levels of the inflammatory biomarker soluble urokinase plasminogen activator receptor in a general population. Biomark Insights 9, 91100.
10. Akbaraly, TN, Shipley, MJ, Ferrie, JE, et al. (2015) Long-term adherence to healthy dietary guidelines and chronic inflammation in the prospective Whitehall II study. Am J Med 128, 152160.e154.
11. Pounis, G, Bonaccio, M, Di Castelnuovo, A, et al. (2016) Polyphenol intake is associated with low-grade inflammation, using a novel data analysis from the Moli-sani study. Thromb Haemost 115, 344352.
12. Roager, HM, Vogt, JK, Kristensen, M, et al. (2017) Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: a randomised cross-over trial. Gut 68, 8393.
13. Boden, S, Wennberg, M, Van Guelpen, B, et al. (2017) Dietary inflammatory index and risk of first myocardial infarction: a prospective population-based study. Nutr J 16, 21.
14. Sala-Vila, A, Estruch, R & Ros, E (2015) New insights into the role of nutrition in CVD prevention. Curr Cardiol Rep 17, 26.
15. Reidlinger, DP, Darzi, J, Hall, WL, et al. (2015) How effective are current dietary guidelines for cardiovascular disease prevention in healthy middle-aged and older men and women? A randomized controlled trial. Am J Clin Nutr 101, 922930.
16. Roswall, N, Sandin, S, Lof, M, et al. (2015) Adherence to the healthy Nordic food index and total and cause-specific mortality among Swedish women. Eur J Epidemiol 30, 509517.
17. Letois, F, Mura, T, Scali, J, et al. (2016) Nutrition and mortality in the elderly over 10 years of follow-up: the Three-City study. Br J Nutr 116, 882889.
18. Schulze, MB & Hoffmann, K (2006) Methodological approaches to study dietary patterns in relation to risk of coronary heart disease and stroke. Br J Nutr 95, 860869.
19. Jorgensen, T, Borch-Johnsen, K, Thomsen, TF, et al. (2003) A randomized non-pharmacological intervention study for prevention of ischaemic heart disease: baseline results Inter99. Eur J Cardiovasc Prev Rehabil 10, 377386.
20. Jorgensen, T, Jacobsen, RK, Toft, U, et al. (2014) Effect of screening and lifestyle counselling on incidence of ischaemic heart disease in general population: Inter99 randomised trial. BMJ 348, g3617.
21. Pedersen, CB (2011) The Danish civil registration system. Scand J Public Health 39, 2225.
22. Toft, U, Kristoffersen, LH, Lau, C, et al. (2007) The dietary quality score: validation and association with cardiovascular risk factors: the Inter99 study. Eur J Clin Nutr 61, 270278.
23. von Huth Smith, L, Borch-Johnsen, K & Jorgensen, T (2007) Commuting physical activity is favourably associated with biological risk factors for cardiovascular disease. Eur J Epidemiol 22, 771779.
24. Lynge, E, Sandegaard, JL & Rebolj, M (2011) The Danish national patient register. Scand J Public Health 39, 3033.
25. Helweg-Larsen, K (2011) The Danish register of causes of death. Scand J Public Health 39, 2629.
26. Friedewald, WT, Levy, RI & Fredrickson, DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18, 499502.
27. Pearl, J (1995) Causal diagrams for empirical research. Biometrika 82, 669688.
28. Schisterman, EF, Cole, SR & Platt, RW (2009) Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology 20, 488495.
29. Escola-Gil, JC, Julve, J, Griffin, BA, et al. (2015) HDL and lifestyle interventions. Handb Exp Pharmacol 224, 569592.
30. Malik, VS, Pan, A, Willett, WC, et al. (2013) Sugar-sweetened beverages and weight gain in children and adults: a systematic review and meta-analysis. Am J Clin Nutr 98, 10841102.
31. Willett, WC, Howe, GR & Kushi, LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65, 1220S1228S; discussion 1229S–1231S.
32. Mozaffarian, D, Lemaitre, RN, King, IB, et al. (2011) Circulating long-chain omega-3 fatty acids and incidence of congestive heart failure in older adults: the cardiovascular health study: a cohort study. Ann Intern Med 155, 160170.
33. Robinson, LE & Mazurak, VC (2013) n-3 polyunsaturated fatty acids: relationship to inflammation in healthy adults and adults exhibiting features of metabolic syndrome. Lipids 48, 319332.
34. Hodges, GW, Bang, CN, Wachtell, K, et al. (2015) suPAR: a new biomarker for cardiovascular disease? Can J Cardiol 31, 12931302.
35. Wolf, PA, D’Agostino, RB, Belanger, AJ, et al. (1991) Probability of stroke: a risk profile from the Framingham study. Stroke 22, 312318.
36. Persson, M, Ostling, G, Smith, G, et al. (2014) Soluble urokinase plasminogen activator receptor: a risk factor for carotid plaque, stroke, and coronary artery disease. Stroke 45, 1823.
37. Buch, P, Rasmussen, S, Gislason, GH, et al. (2007) Temporal decline in the prognostic impact of a recurrent acute myocardial infarction 1985 to 2002. Heart 93, 210215.
38. Frost, L, Andersen, LV, Vestergaard, P, et al. (2007) Trend in mortality after stroke with atrial fibrillation. Am J Med 120, 4753.
39. Schmidt, M, Ulrichsen, SP, Pedersen, L, et al. (2016) Thirty-year trends in heart failure hospitalization and mortality rates and the prognostic impact of co-morbidity: a Danish nationwide cohort study. Eur J Heart Fail 18, 490499.
40. Cleghorn C, Harrison RA, Ransley JK et al. (2016) Can a dietary quality score derived from a short-form FFQ assess dietary quality in UK adult population surveys? Public Health Nutr 19, 2915–2923.
41. Cade J, Thompson R, Burley V, et al. (2002) Development, validation and utilisation of food-frequency questionnaires – a reviewPublic Health Nutr 5, 567–587.
42. Yokoyama, Y, Takachi, R, Ishihara, J, et al. (2016) Validity of short and long self-administered food frequency questionnaires in ranking dietary intake in middle-aged and elderly Japanese in the Japan Public Health Center-Based Prospective Study for the Next Generation (JPHC-NEXT) protocol area. J Epidemiol 26, 420432.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
PDF
Supplementary materials

Törnkvist et al. supplementary material Table S1
Table S1

 PDF (56 KB)
56 KB
PDF
Supplementary materials

Törnkvist et al. supplementary material
Table S2

 PDF (52 KB)
52 KB
PDF
Supplementary materials

Törnkvist et al. supplementary material
Table S3

 PDF (67 KB)
67 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed