Skip to main content Accessibility help
×
Home

Short-term effects of dietary advanced glycation end products in rats

  • Malene W. Poulsen (a1), Jeanette M. Andersen (a1) (a2), Rikke V. Hedegaard (a3), Andreas N. Madsen (a4), Britta N. Krath (a1), Rastislav Monošík (a1) (a5), Monika J. Bak (a1) (a6), John Nielsen (a2), Birgitte Holst (a4), Leif H. Skibsted (a3), Lesli H. Larsen (a1) and Lars O. Dragsted (a1)...

Abstract

Dietary advanced glycation end products (AGE) formed during heating of food have gained interest as potential nutritional toxins with adverse effects on inflammation and glucose metabolism. In the present study, we investigated the short-term effects of high and low molecular weight (HMW and LMW) dietary AGE on insulin sensitivity, expression of the receptor for AGE (RAGE), the AGE receptor 1 (AGER1) and TNF-α, F2-isoprostaglandins, body composition and food intake. For 2 weeks, thirty-six Sprague–Dawley rats were fed a diet containing 20 % milk powder with different proportions of this being given as heated milk powder (0, 40 or 100 %), either native (HMW) or hydrolysed (LMW). Gene expression of RAGE and AGER1 in whole blood increased in the group receiving a high AGE LMW diet, which also had the highest urinary excretion of the AGE, methylglyoxal-derived hydroimidazolone 1 (MG-H1). Urinary excretion of N ε -carboxymethyl-lysine increased with increasing proportion of heat-treated milk powder in the HMW and LMW diets but was unrelated to gene expression. There was no difference in insulin sensitivity, F2-isoprostaglandins, food intake, water intake, body weight or body composition between the groups. In conclusion, RAGE and AGER1 expression can be influenced by a high AGE diet after only 2 weeks in proportion to MG-H1 excretion. No other short-term effects were observed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Short-term effects of dietary advanced glycation end products in rats
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Short-term effects of dietary advanced glycation end products in rats
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Short-term effects of dietary advanced glycation end products in rats
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: L. O. Dragsted, fax +45 3533 2483, email ldra@nexs.ku.dk

References

Hide All
1. Henle, T (2005) Protein-bound advanced glycation endproducts (AGEs) as bioactive amino acid derivatives in foods. Amino Acids 29, 313322.
2. Poulsen, MW, Hedegaard, RV, Andersen, JM, et al. (2013) Advanced glycation endproducts in food and their effects on health. Food Chem Toxicol 60, 1037.
3. Henle, T (2003) AGEs in foods: do they play a role in uremia? Kidney Int Suppl 84, S145S147.
4. Tessier, FJ & Birlouez-Aragon, I (2012) Health effects of dietary Maillard reaction products: the results of ICARE and other studies. Amino Acids 42, 11191131.
5. Vlassara, H & Striker, GE (2011) AGE restriction in diabetes mellitus: a paradigm shift. Nat Rev Endocrinol 7, 526539.
6. He, C, Sabol, J, Mitsuhashi, T, et al. (1999) Dietary glycotoxins: inhibition of reactive products by aminoguanidine facilitates renal clearance and reduces tissue sequestration. Diabetes 48, 13081315.
7. Koschinsky, T, He, CJ, Mitsuhashi, T, et al. (1997) Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci U S A 94, 64746479.
8. Finot, PA & Magnenat, E (1981) Metabolic transit of early and advanced Maillard products. Prog Food Nutr Sci 5, 193207.
9. Foerster, A, Kuhne, Y & Henle, T (2005) Studies on absorption and elimination of dietary Maillard reaction products. Ann N Y Acad Sci 1043, 474481.
10. Poulsen, MW, Bak, MJ, Andersen, JM, et al. (2014) Effect of dietary advanced glycation end products on postprandial appetite, inflammation, and endothelial activation in healthy overweight individuals. Eur J Nutr 53, 661672.
11. Jongberg, S, Rasmussen, M, Skibsted, LH, et al. (2012) Detection of advanced glycation end-products (AGEs) during dry-state storage of beta-lactoglobulin/lactose. Aust J Chem 65, 16201624.
12. Degen, J, Hellwig, M & Henle, T (2012) 1,2-Dicarbonyl compounds in commonly consumed foods. J Agric Food Chem 60, 70717079.
13. Zhang, H, Il’yasova, D, Sztaray, J, et al. (2010) Quantification of the oxidative damage biomarker 2,3-dinor-8-isoprostaglandin-F(2alpha) in human urine using liquid chromatography-tandem mass spectrometry. Anal Biochem 399, 302304.
14. Ames, JM (2008) Determination of N epsilon-(carboxymethyl)lysine in foods and related systems. Ann N Y Acad Sci 1126, 2024.
15. Degen, J, Vogel, M, Richter, D, et al. (2013) Metabolic transit of dietary methylglyoxal. J Agric Food Chem 61, 1025310260.
16. Cai, W, He, JC, Zhu, L, et al. (2007) Reduced oxidant stress and extended lifespan in mice exposed to a low glycotoxin diet: association with increased AGER1 expression. Am J Pathol 170, 18931902.
17. Vlassara, H, Cai, WJ, Goodman, S, et al. (2009) Protection against loss of innate defenses in adulthood by low advanced glycation end products (AGE) intake: role of the antiinflammatory AGE receptor-1. J Clin Endocrinol Metab 94, 44834491.
18. Thornalley, PJ (1998) Cell activation by glycated proteins. AGE receptors, receptor recognition factors and functional classification of AGEs. Cell Mol Biol (Noisy-le-grand) 44, 10131023.
19. Valencia, JV, Mone, M, Koehne, C, et al. (2004) Binding of receptor for advanced glycation end products (RAGE) ligands is not sufficient to induce inflammatory signals: lack of activity of endotoxin-free albumin-derived advanced glycation end products. Diabetologia 47, 844852.
20. Thorpe, SR & Baynes, JW (2002) CML: a brief history. Int Congr Ser 1245, 9199.
21. Cai, W, He, JC, Zhu, L, et al. (2008) Oral glycotoxins determine the effects of calorie restriction on oxidant stress, age-related diseases, and lifespan. Am J Pathol 173, 327336.
22. Cai, W, Ramdas, M, Zhu, L, et al. (2012) Oral advanced glycation endproducts (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1. Proc Natl Acad Sci U S A 109, 1588815893.
23. Harcourt, BE, Sourris, KC, Coughlan, MT, et al. (2011) Targeted reduction of advanced glycation improves renal function in obesity. Kidney Int 80, 190198.
24. Lin, RY, Choudhury, RP, Cai, W, et al. (2003) Dietary glycotoxins promote diabetic atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 168, 213220.
25. Brett, J, Schmidt, AM, Yan, SD, et al. (1993) Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am J Pathol 143, 16991712.
26. Zill, H, Gunther, R, Erbersdobler, HF, et al. (2001) RAGE expression and AGE-induced MAP kinase activation in Caco-2 cells. Biochem Biophys Res Commun 288, 11081111.
27. Hofmann, SM, Dong, HJ, Li, Z, et al. (2002) Improved insulin sensitivity is associated with restricted intake of dietary glycoxidation products in the db/db mouse. Diabetes 51, 20822089.
28. Sandu, O, Song, K, Cai, W, et al. (2005) Insulin resistance and type 2 diabetes in high-fat-fed mice are linked to high glycotoxin intake. Diabetes 54, 23142319.
29. Chuyen, NV, Arai, H, Nakanishi, T, et al. (2005) Are food advanced glycation end products toxic in biological systems? Ann N Y Acad Sci 1043, 467473.
30. Sebekova, K, Hofmann, T, Boor, P, et al. (2005) Renal effects of oral Maillard reaction product load in the form of bread crusts in healthy and subtotally nephrectomized rats. Ann N Y Acad Sci 1043, 482491.
31. Feng, JX, Hou, FF, Liang, M, et al. (2007) Restricted intake of dietary advanced glycation end products retards renal progression in the remnant kidney model. Kidney Int 71, 901911.
32. Peppa, M, He, C, Hattori, M, et al. (2003) Fetal or neonatal low-glycotoxin environment prevents autoimmune diabetes in NOD mice. Diabetes 52, 14411448.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed