Skip to main content Accessibility help
×
Home

Sex differences in postprandial responses to different dairy products on lipoprotein subclasses: a randomised controlled cross-over trial

  • Patrik Hansson (a1), Kirsten B. Holven (a1) (a2), Linn K. L. Øyri (a1), Hilde K. Brekke (a1), Gyrd O. Gjevestad (a3), Magne Thoresen (a4) and Stine M. Ulven (a1)...

Abstract

Men have earlier first-time event of CHD and higher postprandial TAG response compared with women. The aim of this exploratory sub-study was to investigate if intake of meals with the same amount of fat from different dairy products affects postprandial lipoprotein subclasses differently in healthy women and men. A total of thirty-three women and fourteen men were recruited to a randomised controlled cross-over study with four dairy meals consisting of butter, cheese, whipped cream or sour cream, corresponding to 45 g of fat (approximately 60 energy percent). Blood samples were taken at 0, 2, 4 and 6 h postprandially. Lipoprotein subclasses were measured using NMR and analysed using a linear mixed model. Sex had a significant impact on the response in M-VLDL (P=0·04), S-LDL (P=0·05), XL-HDL (P=0·009) and L-HDL (P=0·001) particle concentration (P), with women having an overall smaller increase in M-VLDL-P, a larger decrease in S-LDL-P and a larger increase in XL- and L-HDL-P compared with men, independent of meal. Men showed a decrease in XS-VLDL-P compared with women after intake of sour cream (P<0·01). In men only, XS-VLDL-P decreased after intake of sour cream compared with all other meals (v. butter: P=0·001; v. cheese: P=0·04; v. whipped cream: P=0·006). Meals with the same amount of fat from different dairy products induce different postprandial effects on lipoprotein subclass concentrations in men and women.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Sex differences in postprandial responses to different dairy products on lipoprotein subclasses: a randomised controlled cross-over trial
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Sex differences in postprandial responses to different dairy products on lipoprotein subclasses: a randomised controlled cross-over trial
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Sex differences in postprandial responses to different dairy products on lipoprotein subclasses: a randomised controlled cross-over trial
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

*Corresponding author: Stine M. Ulven, email smulven@medisin.uio.no

References

Hide All
1.Nordestgaard, BG (2016) Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease: new insights from epidemiology, genetics, and biology. Circulation Res 118, 547563.
2.Nordestgaard, BG, Benn, M, Schnohr, P, et al. (2007) Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 298, 299308.
3.Langsted, A, Freiberg, JJ, Tybjaerg-Hansen, A, et al. (2011) Nonfasting cholesterol and triglycerides and association with risk of myocardial infarction and total mortality: the Copenhagen City Heart Study with 31 years of follow-up. J Intern Med 270, 6575.
4.Langsted, A, Freiberg, JJ & Nordestgaard, BG (2008) Fasting and nonfasting lipid levels: influence of normal food intake on lipids, lipoproteins, apolipoproteins, and cardiovascular risk prediction. Circulation 118, 20472056.
5.Kolovou, GD, Mikhailidis, DP, Kovar, J, et al. (2011) Assessment and clinical relevance of non-fasting and postprandial triglycerides: an expert panel statement. Curr Vasc Pharmacol 9, 258270.
6.Toth, PP (2016) Triglyceride-rich lipoproteins as a causal factor for cardiovascular disease. Vasc Health Risk Manage 12, 171183.
7.Lairon, D, Lopez-Miranda, J & Williams, C (2007) Methodology for studying postprandial lipid metabolism. Eur J Clin Nutr 61, 11451161.
8.Wojczynski, MK, Glasser, SP, Oberman, A, et al. (2011) High-fat meal effect on LDL, HDL, and VLDL particle size and number in the Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN): an interventional study. Lipids Health Dis 10, 181.
9.Bots, SH, Peters, SAE & Woodward, M (2017) Sex differences in coronary heart disease and stroke mortality: a global assessment of the effect of ageing between 1980 and 2010. BMJ Global Health 2, e000298.
10.Leening, MJ, Ferket, BS, Steyerberg, EW, et al. (2014) Sex differences in lifetime risk and first manifestation of cardiovascular disease: prospective population based cohort study. BMJ 349, g5992.
11.Pirillo, A, Norata, GD & Catapano, AL (2014) Postprandial lipemia as a cardiometabolic risk factor. Curr Med Res Opin 30, 14891503.
12.Nakajima, K, Nakano, T, Tokita, Y, et al. (2011) Postprandial lipoprotein metabolism: VLDL vs chylomicrons. Clin Chim Acta 412, 13061318.
13.Wurtz, P, Havulinna, AS, Soininen, P, et al. (2015) Metabolite profiling and cardiovascular event risk: a prospective study of 3 population-based cohorts. Circulation 131, 774785.
14.Holmes, MV, Millwood, IY, Kartsonaki, C, et al. (2018) Lipids, lipoproteins, and metabolites and risk of myocardial infarction and stroke. J Am Coll Cardiol 71, 620632.
15.Lawler, PR, Akinkuolie, AO, Harada, P, et al. (2017) Residual risk of atherosclerotic cardiovascular events in relation to reductions in very-low-density lipoproteins. J Am Heart Assoc 6, e007402.
16.Lawler, PR, Akinkuolie, AO, Chu, AY, et al. (2017) Atherogenic lipoprotein determinants of cardiovascular disease and residual risk among individuals with low low-density lipoprotein cholesterol. J Am Heart Assoc 6, e005549.
17.Fischer, K, Kettunen, J, Wurtz, P, et al. (2014) Biomarker profiling by nuclear magnetic resonance spectroscopy for the prediction of all-cause mortality: an observational study of 17, 345 persons. PLoS Med 11, e1001606.
18.Ference, BA, Ginsberg, HN, Graham, I, et al. (2017) Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 38, 24592472.
19.Mora, S, Caulfield, MP, Wohlgemuth, J, et al. (2015) Atherogenic lipoprotein subfractions determined by ion mobility and first cardiovascular events after random allocation to high-intensity statin or placebo: the Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) trial. Circulation 132, 22202229.
20.Bansal, S, Buring, JE, Rifai, N, et al. (2007) Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. Jama 298, 309316.
21.Madsen, CM, Varbo, A, Tybjaerg-Hansen, A, et al. (2018) U-shaped relationship of HDL and risk of infectious disease: two prospective population-based cohort studies. Eur Heart J 39, 11811190.
22. Gordon, DJ, Probstfield, JL, Garrison, RJ, et al. (1989) High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 79, 815.
23.Di Angelantonio, E, Sarwar, N, Perry, P, et al. (2009) Major lipids, apolipoproteins, and risk of vascular disease. JAMA 302, 19932000.
24.Koutsari, C, Zagana, A, Tzoras, I, et al. (2004) Gender influence on plasma triacylglycerol response to meals with different monounsaturated and saturated fatty acid content. Eur J Clin Nutr 58, 495502.
25.Mora, S, Glynn, RJ & Ridker, PM (2013) High-density lipoprotein cholesterol, size, particle number, and residual vascular risk after potent statin therapy. Circulation 128, 11891197.
26.McGarrah, RW, Craig, DM, Haynes, C, et al. (2016) High-density lipoprotein subclass measurements improve mortality risk prediction, discrimination and reclassification in a cardiac catheterization cohort. Atherosclerosis 246, 229235.
27.Wu, Y, Fan, Z, Tian, Y, et al. (2018) Relation between high density lipoprotein particles concentration and cardiovascular events: a meta-analysis. Lipids Health Dis 17, 142.
28. de Goede, J, Geleijnse, JM, Ding, EL, et al. (2015) Effect of cheese consumption on blood lipids: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 73, 259275.
29.Guo, J, Astrup, A, Lovegrove, JA, et al. (2017) Milk and dairy consumption and risk of cardiovascular diseases and all-cause mortality: dose-response meta-analysis of prospective cohort studies. Eur J Epidemiol 32, 269287.
30.Tognon, G, Nilsson, LM, Shungin, D, et al. (2017) Nonfermented milk and other dairy products: associations with all-cause mortality. Am J Clin Nutr 105, 15021511.
31.Hansson, P, Holven, KB, Øyri, LKL, et al. (2019) Meals with similar fat content from different dairy products induce different postprandial triglyceride responses in healthy adults: a randomized controlled cross-over trial. J Nutr 149, 422431.
32.Oyri, LKL, Hansson, P, Bogsrud, MP, et al. (2018) Delayed postprandial TAG peak after intake of SFA compared with PUFA in subjects with and without familial hypercholesterolaemia: a randomised controlled trial. Br J Nutr 119, 11421150.
33.Jackson, KG, Walden, CM, Murray, P, et al. (2012) A sequential two meal challenge reveals abnormalities in postprandial TAG but not glucose in men with increasing numbers of metabolic syndrome components. Atherosclerosis 220, 237243.
34.Soininen, P, Kangas, AJ, Wurtz, P, et al. (2015) Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circulation Cardiovasc Genet 8, 192206.
35.Wurtz, P, Kangas, AJ, Soininen, P, et al. (2017) Quantitative serum nuclear magnetic resonance metabolomics in large-scale epidemiology: a primer on -omic technologies. Am J Epidemiol 186, 10841096.
36. Carstensen, M, Thomsen, C & Hermansen, K (2003) Incremental area under response curve more accurately describes the triglyceride response to an oral fat load in both healthy and type 2 diabetic subjects. Metab Clin Exp 52, 10341037.
37.Matthews, JN, Altman, DG, Campbell, MJ, et al. (1990) Analysis of serial measurements in medical research. BMJ 300, 230235.
38.Liang, L, Qi, C, Wang, X, et al. (2017) Influence of homogenization and thermal processing on the gastrointestinal fate of bovine milk fat: in vitro digestion study. J Agric Food Chem 65, 1110911117.
39.Islam, MA, Devle, H, Comi, I, et al. (2017) Ex vivo digestion of raw, pasteurised and homogenised milk– Effects on lipolysis and proteolysis. Int Dairy J 65, 1419.
40.Camont, L, Chapman, MJ & Kontush, A (2011) Biological activities of HDL subpopulations and their relevance to cardiovascular disease. Trends Mol Med 17, 594603.
41.Colhoun, HM, Otvos, JD, Rubens, MB, et al. (2002) Lipoprotein subclasses and particle sizes and their relationship with coronary artery calcification in men and women with and without type 1 diabetes. Diabetes 51, 19491956.
42.Vors, C, Pineau, G, Gabert, L, et al. (2013) Modulating absorption and postprandial handling of dietary fatty acids by structuring fat in the meal: a randomized crossover clinical trial. Am J Clin Nutr 97, 2336.
43. Carmena, R, Duriez, P & Fruchart, JC (2004) Atherogenic lipoprotein particles in atherosclerosis. Circulation 109, Iii2Iii7.
44. Diffenderfer, MR & Schaefer, EJ (2014) The composition and metabolism of large and small LDL. Curr Opin Lipidol 25, 221226.
45.Cohn, JS (2006) Postprandial lipemia and remnant lipoproteins. Clin Lab Med 26, 773786.
46.Cohn, JS, McNamara, JR, Cohn, SD, et al. (1988) Postprandial plasma lipoprotein changes in human subjects of different ages. J Lipid Res 29, 469479.
47.Bjorkegren, J, Packard, CJ, Hamsten, A, et al. (1996) Accumulation of large very low density lipoprotein in plasma during intravenous infusion of a chylomicron-like triglyceride emulsion reflects competition for a common lipolytic pathway. J Lipid Res 37, 7686.
48. Teng, KT, Chang, CY, Kanthimathi, MS, et al. (2015) Effects of amount and type of dietary fats on postprandial lipemia and thrombogenic markers in individuals with metabolic syndrome. Atherosclerosis 242, 281287.
49.Freedman, DS, Otvos, JD, Jeyarajah, EJ, et al. (2004) Sex and age differences in lipoprotein subclasses measured by nuclear magnetic resonance spectroscopy: the Framingham Study. Clin Chem 50, 11891200.

Keywords

Type Description Title
PDF
Supplementary materials

Hansson et al. supplementary material
Hansson et al. supplementary material

 PDF (234 KB)
234 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed