Skip to main content Accessibility help
×
Home

Serum and macular response to carotenoid-enriched egg supplementation in human subjects: the Egg Xanthophyll Intervention clinical Trial (EXIT)

  • David Kelly (a1), John M. Nolan (a1), Alan N. Howard (a2) (a3), Jim Stack (a1), Kwadwo O. Akuffo (a1), Rachel Moran (a1), David I. Thurnham (a4), Jessica Dennison (a1), Katherine A. Meagher (a1) and Stephen Beatty (a1)...

Abstract

The macular carotenoids lutein (L), zeaxanthin (Z) and meso-zeaxanthin (MZ) accumulate at the macula, where they are collectively referred to as macular pigment (MP). Augmentation of this pigment, typically achieved through diet and supplementation, enhances visual function and protects against progression of age-related macular degeneration. However, it is known that eggs are a rich dietary source of L and Z, in a highly bioavailable matrix. In this single-blind placebo-controlled study, L- and MZ-enriched eggs and control non-enriched eggs were fed to human subjects (mean age 41 and 35 years, respectively) over an 8-week period, and outcome measures included MP, visual function and serum concentrations of carotenoids and cholesterol. Serum carotenoid concentrations increased significantly in control and enriched egg groups, but to a significantly greater extent in the enriched egg group (P<0·001 for L, Z and MZ). There was no significant increase in MP in either study group post intervention, and we saw no significant improvement in visual performance in either group. Total cholesterol increased significantly in each group, but it did not exceed the upper limit of the normative range (6·5 mmol/l). Therefore, carotenoid-enriched eggs may represent an effective dietary source of L, Z and MZ, reflected in significantly raised serum concentrations of these carotenoids, and consequentially improved bioavailability for capture by target tissues. However, benefits in terms of MP augmentation and /or improved visual performance were not realised over the 8-week study period, and a study of greater duration will be required to address these questions.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Serum and macular response to carotenoid-enriched egg supplementation in human subjects: the Egg Xanthophyll Intervention clinical Trial (EXIT)
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Serum and macular response to carotenoid-enriched egg supplementation in human subjects: the Egg Xanthophyll Intervention clinical Trial (EXIT)
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Serum and macular response to carotenoid-enriched egg supplementation in human subjects: the Egg Xanthophyll Intervention clinical Trial (EXIT)
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

* Corresponding author: Dr D. Kelly, email davidkelly_24@yahoo.co.uk

References

Hide All
1. Meagher, KA, Thurnham, DI, Beatty, S, et al. (2012) Serum response to supplemental macular carotenoids in subjects with and without age-related macular degeneration. Br J Nutr 110, 289300.
2. Hirsch, J & Curcio, CA (1989) The spatial resolution capacity of human foveal retina. Vision Res 29, 10951101.
3. Bressler, NM (2004) Age-related macular degeneration is the leading cause of blindness. JAMA 291, 19001901.
4. Sabour-Pickett, S, Nolan, JM, Loughman, J, et al. (2011) A review of the evidence germane to the putative protective role of the macular carotenoids for age-related macular degeneration. Mol Nutr Food Res 10, 270286.
5. Loane, E, Kelliher, C, Beatty, S, et al. (2008) The rationale and evidence base for a protective role of macular pigment in age-related maculopathy. Br J Ophthalmol 92, 11631168.
6. Pintea, A, Socaciu, C, Rugina, DO, et al. (2011) Xanthophylls protect against induced oxidation in cultured human retinal pigment epithelial cells. J Food Composition Anal 26, 830836.
7. Beatty, S, Koh, HH, Henson, D, et al. (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45, 115134.
8. Trevithick-Sutton, CC, Foote, CS, Collins, M, et al. (2006) The retinal carotenoids zeaxanthin and lutein scavenge superoxide and hydroxyl radicals: a chemiluminescence and ESR study. Mol Vis 12, 11271135.
9. Khachik, F, Beecher, GR & Goli, MB (1992) Separation and identification of carotenoids of carotenoids and their oxidation products in the extracts of human plasma. Anal Chem 64, 21112122.
10. Junghans, A, Sies, H & Stahl, W (2001) Macular pigments lutein and zeaxanthin as blue light filters studied in liposomes. Arch Biochem Biophys 391, 160164.
11. Snodderly, DM, Brown, PK, Delori, FC, et al. (1984) The macular pigment. 1. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas. Invest Ophthalmol Vis Sci 25, 660673.
12. Nolan, JM, Loughman, J, Akkali, MC, et al. (2011) The impact of macular pigment augmentation on visual performance in normal subjects: COMPASS. Vision Res 51, 459469.
13. Huang, YM, Yan, SF, Ma, L, et al. (2013) Serum and macular responses to multiple xanthophyll supplements in patients with early age-related macular degeneration. Nutrition 29, 387392.
14. Sabour-Pickett, S, Beatty, S, Connolly, E, et al. (2014) Supplementation with three different macular carotenoid formulations in patients with early age-related macular degeneration. Retina 34, 17571766.
15. Murray, IJ, Makridaki, M, van der Veen, RL, et al. (2013) Lutein supplementation over a one-year period in early AMD might have a mild beneficial effect on visual acuity: the CLEAR study. Invest Ophthalmol Vis Sci 54, 17811788.
16. Ma, L, Yan, SF, Huang, YM, et al. (2012) Effect of lutein and zeaxanthin on macular pigment and visual function in patients with early age-related macular degeneration. Ophthalmology 119, 22902297.
17. Peng, ML, Chiu, HF, Chou, H, et al. (2016) Influence/impact of lutein complex (marigold flower and wolfberry) on visual function with early age-related macular degeneration subjects: a randomized clinical trial. J Funct Foods 24, 122130.
18. Liu, R, Wang, T, Zhang, B, et al. (2015) Lutein and zeaxanthin supplementation and association with visual function in age-related macular degeneration. Invest Ophthalmol Vis Sci 56, 252258.
19. Wolf-Schnurrbusch, UE, Zinkernagel, MS, Munk, MR, et al. (2015) Oral lutein supplementation enhances macular pigment density and contrast sensitivity but not in combination with polyunsaturated fatty acids. Invest Ophthalmol Vis Sci 56, 80698074.
20. Loughman, J, Nolan, JM, Howard, AN, et al. (2012) The impact of macular pigment augmentation on visual performance using different carotenoid formulations. Invest Ophthalmol Vis Sci 53, 78717880.
21. Nolan, JM, Power, R, Stringham, J, et al. (2016) Enrichment of macular pigment enhances contrast sensitivity in subjects free of retinal disease: Central Retinal Enrichment Supplementation Trials – Report 1. Invest Ophthalmol Vis Sci 57, 34293439.
22. Ozawa, Y, Sasaki, M, Takahashi, N, et al. (2012) Neuroprotective effects of lutein in the retina. Curr Pharm Des 18, 5156.
23. Kamoshita, M, Toda, E, Osada, H, et al. (2016) Lutein acts via multiple antioxidant pathways in the photo-stressed retina. Sci Rep 6, 30226.
24. Vishwanathan, R, Neuringer, M, Snodderly, DM, et al. (2012) Macular lutein and zeaxanthin are related to brain lutein and zeaxanthin in primates. Nutr Neurosci 16, 2129.
25. Craft, NE, Haitema, TB, Garnett, KM, et al. (2004) Carotenoid, tocopherol, and retinol concentrations in elderly human brain. J Nutr Health Aging 8, 156162.
26. Vishwanathan, R, Kuchan, MJ, Sen, S, et al. (2014) Lutein and preterm infants with decreased concentrations of brain carotenoids. J Pediatr Gastroenterol Nutr 59, 659665.
27. Johnson, EJ, Vishwanathan, R, Johnson, MA, et al. (2013) Relationship between serum and brain carotenoids, alpha-tocopherol, and retinol concentrations and cognitive performance in the oldest old from the Georgia Centenarian Study. J Aging Res 2013, 951786.
28. Kelly, D, Coen, RF, Akuffo, KO, et al. (2015) Cognitive function and its relationship with macular pigment optical density and serum concentrations of its constituent carotenoids. J Alzheimers Dis 48, 261277.
29. Vishwanathan, R, Iannaccone, A, Scott, TM, et al. (2014) Macular pigment optical density is related to cognitive function in older people. Age Ageing 43, 271275.
30. Renzi, LM, Dengler, MJ, Puente, A, et al. (2014) Relationships between macular pigment optical density and cognitive function in unimpaired and mildly cognitively impaired older adults. Neurobiol Aging 35, 16951699.
31. Johnson, EJ, Vishwanathan, R & Schalch, W (2011) Brain levels of lutein (L) and zeaxanthin (Z) are related to cognitive function in centenarians. FASEB J 25, 1 Suppl., 975.21.
32. Imran, M, Anjum, FM, Nadeem, M, et al. (2015) Production of bio-omega-3 eggs through the supplementation of extruded flaxseed meal in hen diet. Lipids Health Dis 14, 126.
33. Goldberg, EM, Gakhar, N, Ryland, D, et al. (2012) Fatty acid profile and sensory characteristics of table eggs from laying hens fed hempseed and hempseed oil. J Food Sci 77, S153S160.
34. Lewis, NM, Seburg, S & Flanagan, NL (2000) Enriched eggs as a source of n-3 polyunsaturated fatty acids for humans. Poult Sci 79, 971974.
35. Goldberg, EM, Ryland, D, Gibson, RA, et al. (2013) Designer laying hen diets to improve egg fatty acid profile and maintain sensory quality. Food Sci Nutr 1, 324335.
36. Stergiadis, S, Leifert, C, Seal, CJ, et al. (2014) Improving the fatty acid profile of winter milk from housed cows with contrasting feeding regimes by oilseed supplementation. Food Chem 164, 293300.
37. Rahmawaty, S, Lyons-Wall, P, Charlton, K, et al. (2014) Effect of replacing bread, egg, milk, and yogurt with equivalent omega-3 enriched foods on omega-3 LCPUFA intake of Australian children. Nutrition 30, 13371343.
38. Thurnham, DI (2007) Macular zeaxanthins and lutein – a review of dietary sources and bioavailability and some relationships with macular pigment optical density and age-related macular disease. Nutr Res Rev 20, 163179.
39. Sommerburg, O, Keunen, JE, Bird, AC, et al. (1998) Fruits and vegetables that are sources for lutein and zeaxanthin: the macular pigment in human eyes. Br J Ophthalmol 82, 907910.
40. Perry, A, Rasmussen, H & Johnson, EJ (2009) Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg products. J Food Composition Anal 22, 915.
41. Maoka, T, Arai, A, Shimizu, M, et al. (1986) The first isolation of enantiomeric and meso-zeaxanthin in nature. Comp Biochem Physiol B 83, 121124.
42. Nolan, JM, Beatty, S, Meagher, KA, et al. (2014) Verification of zeaxanthin in Fish. J Food Process Technol 5, 335.
43. Bone, RA, Landrum, JT, Hime, GW, et al. (1993) Stereochemistry of the human macular carotenoids. Invest Ophthalmol Vis Sci 34, 20332040.
44. Johnson, EJ, Neuringer, M, Russell, RM, et al. (2005) Nutritional manipulation of primate retinas, III: effects of lutein or zeaxanthin supplementation on adipose tissue and retina of xanthophyll-free monkeys. Invest Ophthalmol Vis Sci 46, 692702.
45. Nolan, JM, Meagher, K, Kashani, S, et al. (2013) What is meso-zeaxanthin, and where does it come from? Eye (Lond) 27, 899905.
46. Bone, RA, Landrum, JT, Friedes, LM, et al. (1997) Distribution of lutein and zeaxanthin stereoisomers in the human retina. Exp Eye Res 64, 211218.
47. Li, B, Ahmed, F & Bernstein, PS (2010) Studies on the singlet oxygen scavenging mechanism of human macular pigment. Arch Biochem Biophys 504, 5660.
48. Handelman, GJ, Nightingale, ZD, Lichtenstein, AH, et al. (1999) Lutein and zeaxanthin concentrations in plasma after dietary supplementation with egg yolk. Am J Clin Nutr 70, 247251.
49. Rich, GT, Bailey, AL, Faulks, RM, et al. (2003) Solubilization of carotenoids from carrot juice and spinach in lipid phases: I. Modeling the gastric lumen. Lipids 38, 933945.
50. Erdman, JW Jr, Bierer, TL & Gugger, ET (1993) Absorption and transport of carotenoids. Ann N Y Acad Sci 691, 7685.
51. Rock, CL, Lovalvo, JL, Emenhiser, C, et al. (1998) Bioavailability of beta-carotene is lower in raw than in processed carrots and spinach in women. J Nutr 128, 913916.
52. Yeum, KJ & Russell, RM (2002) Carotenoid bioavailability and bioconversion. Annu Rev Nutr 22, 483504.
53. Courraud, J, Berger, J, Cristol, JP, et al. (2013) Stability and bioaccessibility of different forms of carotenoids and vitamin A during in vitro digestion. Food Chem 136, 871877.
54. Goodrow, EF, Wilson, TA, Houde, SC, et al. (2006) Consumption of one egg per day increases serum lutein and zeaxanthin concentrations in older adults without altering serum lipid and lipoprotein cholesterol concentrations. J Nutr 136, 25192524.
55. Chung, HY, Rasmussen, HM & Johnson, EJ (2004) Lutein bioavailability is higher from lutein-enriched eggs than from supplements and spinach in men. J Nutr 134, 18871893.
56. Hammond, BR, Johnson, EJ, Russell, RM, et al. (1997) Dietary modification of human macular pigment density. Invest Ophthalmol Vis Sci 38, 17951801.
57. Wang, W, Connor, SL, Johnson, EJ, et al. (2007) Effect of dietary lutein and zeaxanthin on plasma carotenoids and their transport in lipoproteins in age-related macular degeneration. Am J Clin Nutr 85, 762769.
58. Loane, E, Nolan, JM & Beatty, S (2010) The respective relationships between lipoprotein profile, macular pigment optical density, and serum concentrations of lutein and zeaxanthin. Invest Ophthalmol Vis Sci 51, 58975905.
59. Greene, CM, Waters, D, Clark, RM, et al. (2006) Plasma LDL and HDL characteristics and carotenoid content are positively influenced by egg consumption in an elderly population. Nutr Metab (Lond) 3, 6.
60. McNamara, DJ (2015) The Fifty Year Rehabilitation of the Egg. Nutrients 7, 87168722.
61. Thurnham, DI, Nolan, JM, Howard, AN, et al. (2015) Macular response to supplementation with differing xanthophyll formulations in subjects with and without age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 253, 12311243.
62. Wenzel, AJ, Gerweck, C, Barbato, D, et al. (2006) A 12-wk egg intervention increases serum zeaxanthin and macular pigment optical density in women. J Nutr 136, 25682573.
63. Vishwanathan, R, Goodrow-Kotyla, EF, Wooten, BR, et al. (2009) Consumption of 2 and 4 egg yolks/d for 5 wk increases macular pigment concentrations in older adults with low macular pigment taking cholesterol-lowering statins. Am J Clin Nutr 90, 12721279.
64. van der Made, SM, Kelly, ER, Kijlstra, A, et al. (2016) Increased macular pigment optical density and visual acuity following consumption of a buttermilk drink containing lutein-enriched egg yolks: a randomized, double-blind, placebo-controlled trial. J Ophthalmol 2016, 9035745.
65. Nolan, JM, Meagher, KA, Howard, AN, et al. (2016) Lutein, zeaxanthin and meso-zeaxanthin content of eggs laid by hens supplemented with free and esterified xanthophylls. J Nutr Sci 5, e1.
66. Wooten, BR & Hammond, BR (2005) Spectral absorbance and spatial distribution of macular pigment using heterochromatic flicker photometry. Optom Vis Sci 82, 378386.
67. Wooten, BR, Hammond, BR, Land, RI, et al. (1999) A practical method for measuring macular pigment optical density. Invest Ophthalmol Vis Sci 40, 24812489.
68. Loane, E, Stack, J, Beatty, S, et al. (2007) Measurement of macular pigment optical density using two different heterochromatic flicker photometers. Curr Eye Res 32, 555564.
69. Stringham, JM, Hammond, BR, Nolan, JM, et al. (2008) The utility of using customized heterochromatic flicker photometry (cHFP) to measure macular pigment in patients with age-related macular degeneration. Exp Eye Res 87, 445453.
70. Delori, FC, Goger, DG, Hammond, BR, et al. (2001) Macular pigment density measured by autofluorescence spectrometry: comparison with reflectometry and heterochromatic flicker photometry. J Opt Soc Am A Opt Image Sci Vis 18, 12121230.
71. Wustemeyer, H, Jahn, C, Nestler, A, et al. (2002) A new instrument for the quantification of macular pigment density: first results in patients with AMD and healthy subjects. Graefes Arch Clin Exp Ophthalmol 240, 666671.
72. Hohberger, B, Laemmer, R, Adler, W, et al. (2007) Measuring contrast sensitivity in normal subjects with OPTEC 6500: influence of age and glare. Graefes Arch Clin Exp Ophthalmol 245, 18051814.
73. Akuffo, KO, Beatty, S, Stack, J, et al. (2014) Central Retinal Enrichment Supplementation Trials (CREST): design and methodology of the CREST randomized controlled trials. Ophthalmic Epidemiol 21, 111123.
74. Nolan, JM, Loskutova, E, Howard, AN, et al. (2014) Macular pigment, visual function, and macular disease among subjects with alzheimer’s disease: an exploratory study. J Alzheimers Dis 42, 11911202.
75. Blesso, CN, Andersen, CJ, Bolling, BW, et al. (2013) Egg intake improves carotenoid status by increasing plasma HDL cholesterol in adults with metabolic syndrome. Food Funct 4, 213221.
76. Kelly, ER, Plat, J, Haenen, GR, et al. (2014) The effect of modified eggs and an egg-yolk based beverage on serum lutein and zeaxanthin concentrations and macular pigment optical density: results from a randomized trial. PLOS ONE 9, e92659.
77. Mutungi, G, Waters, D, Ratliff, J, et al. (2010) Eggs distinctly modulate plasma carotenoid and lipoprotein subclasses in adult men following a carbohydrate-restricted diet. J Nutr Biochem 21, 261267.
78. van der Made, SM, Kelly, ER, Berendschot, TT, et al. (2014) Consuming a buttermilk drink containing lutein-enriched egg yolk daily for 1 year increased plasma lutein but did not affect serum lipid or lipoprotein concentrations in adults with early signs of age-related macular degeneration. J Nutr 144, 13701377.
79. Surai, PF, MacPherson, A, Speake, BK, et al. (2000) Designer egg evaluation in a controlled trial. Eur J Clin Nutr 54, 298305.
80. Bunger, M, Quataert, M, Kamps, L, et al. (2014) Bioavailability of lutein from a lutein-enriched egg-yolk beverage and its dried re-suspended versions. Int J Food Sci Nutr 65, 903909.
81. Nimalaratne, C, Lopes-Lutz, D, Schieber, A, et al. (2012) Effect of domestic cooking methods on egg yolk xanthophylls. J Agric Food Chem 60, 1254712552.
82. Connolly, EE, Beatty, S, Thurnham, DI, et al. (2010) Augmentation of macular pigment following supplementation with all three macular carotenoids: an exploratory study. Curr Eye Res 35, 335351.
83. Thurnham, DI, Tremel, A & Howard, AN (2008) A supplementation study in human subjects with a combination of meso-zeaxanthin, (3R,3’R)-zeaxanthin and (3R,3’R,6’R)-lutein. Br J Nutr 100, 13071314.
84. Landrum, JT & Bone, RA (2001) Lutein, zeaxanthin, and the macular pigment. Arch Biochem Biophys 385, 2840.
85. Khachik, F, Bernstein, PS & Garland, DL (1997) Identification of lutein and zeaxanthin oxidation products in human and monkey retinas. Invest Ophthalmol Vis Sci 38, 18021811.
86. Aman, R, Biehl, J, Carle, R, et al. (2005) Application of HPLC coupled with DAD, APcI-MS and NMR to the analysis of lutein and zeaxanthin stereoisomers in thermally processed vegetables. Food Chem 92, 753763.
87. Broekmans, WM, Berendschot, TT, Klopping-Ketelaars, IA, et al. (2002) Macular pigment density in relation to serum and adipose tissue concentrations of lutein and serum concentrations of zeaxanthin. Am J Clin Nutr 76, 595603.
88. Blaak, E (2001) Gender differences in fat metabolism. Curr Opin Clin Nutr Metab Care 4, 499502.
89. Johnson, EJ, Hammond, BR, Yeum, KJ, et al. (2000) Relation among serum and tissue concentrations of lutein and zeaxanthin and macular pigment density. Am J Clin Nutr 71, 15551562.
90. Schnohr, P, Thomsen, OO, Riis, HP, et al. (1994) Egg consumption and high-density-lipoprotein cholesterol. J Intern Med 235, 249251.
91. Herron, KL, Lofgren, IE, Sharman, M, et al. (2004) High intake of cholesterol results in less atherogenic low-density lipoprotein particles in men and women independent of response classification. Metabolism 53, 823830.
92. Nimalaratne, C, Savard, P, Gauthier, SF, et al. (2015) Bioaccessibility and digestive stability of carotenoids in cooked eggs studied using a dynamic in vitro gastrointestinal model. J Agric Food Chem 63, 29562962.

Keywords

Type Description Title
WORD
Supplementary materials

Kelly Supplementary Material
Flow Diagram

 Word (52 KB)
52 KB

Serum and macular response to carotenoid-enriched egg supplementation in human subjects: the Egg Xanthophyll Intervention clinical Trial (EXIT)

  • David Kelly (a1), John M. Nolan (a1), Alan N. Howard (a2) (a3), Jim Stack (a1), Kwadwo O. Akuffo (a1), Rachel Moran (a1), David I. Thurnham (a4), Jessica Dennison (a1), Katherine A. Meagher (a1) and Stephen Beatty (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.