Skip to main content Accessibility help
×
Home

Relevant associations of the glucokinase regulatory protein/glucokinase gene variation with TAG concentrations in a high-cardiovascular risk population: modulation by the Mediterranean diet

  • Mercedes Sotos-Prieto (a1) (a2) (a3), Marisa Guillén (a1), Jose Vicente Sorli (a1) (a2), Olga Portolés (a1), Patricia Guillem-Saiz (a1) (a2), Jose Ignacio Gonzalez (a1) (a2), Lu Qi (a3) and Dolores Corella (a1) (a2)...

Abstract

The SNP rs1260326 (P446L) and rs1799884 ( − 30G>A) for the glucokinase regulatory protein (GCKR) and glucokinase (GCK) genes, respectively, have been associated with opposing effects on TAG and glucose concentrations. However, their genetic modulation by diet (dietary patterns or foods) remains to be investigated. We studied 945 high-cardiovascular risk subjects aged 67 (sd 6) years who participated in the PREvención con DIeta MEDiterránea-Valencia Study. Demographic, clinical, biochemical and genetic data were obtained. Adherence to the Mediterranean diet (MD) and food intake were measured by validated questionnaires. Carriers of the L allele of GKCR had significantly higher TAG concentrations (PP: 1·34 (sd 0·05) mmol/l v. PL+LL: 1·54 (sd 0·03) mmol/l; P= 0·014) and LL carriers had lower glucose concentrations (PL+PP: 6·85 (sd 0·08) mmol/l v. LL: 6·40 (sd 0·16) mmol/l; P= 0·032) after multivariate adjustment. Conversely, homozygous subjects for the variant allele (A) in the GCK gene had significantly lower TAG (GG+GA: 1·48 (sd 0·03) mmol/l v. AA: 1·17 (sd 0·18) mmol/l; P= 0·033) and a higher risk of diabetes (OR 3·3, 95 % CI 1·2, 9·2). Combined effects for both SNP increased TAG concentrations by 37 % (P= 0·033). Adherence to the MD modulated the effects of GCKR polymorphism on TAG: subjects with genetic risk had lower TAG (L-allele carriers; PP: 1·48 (sd 0·14) mmol/l v. PL+LL: 1·51 (sd 0·08) mmol/l; P= 0·917) compared with those with a higher adherence. Analysis of the joint effects of the GCKR and individual food items identified significant associations (olive oil (P= 0·035), vegetables (P= 0·012), red meat (P= 0·017), butter (P= 0·039), sweetened carbonated beverages (P= 0·036) and nuts (P= 0·038)). In conclusion, we found that rs1260326 (GCKR) is significantly associated with higher TAG concentrations, but is modulated by adherence to the MD.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Relevant associations of the glucokinase regulatory protein/glucokinase gene variation with TAG concentrations in a high-cardiovascular risk population: modulation by the Mediterranean diet
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Relevant associations of the glucokinase regulatory protein/glucokinase gene variation with TAG concentrations in a high-cardiovascular risk population: modulation by the Mediterranean diet
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Relevant associations of the glucokinase regulatory protein/glucokinase gene variation with TAG concentrations in a high-cardiovascular risk population: modulation by the Mediterranean diet
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: D. Corella, fax +34 963864166, email dolores.corella@uv.es

References

Hide All
1Grimsby, J, Coffey, JW, Dvorozniak, MT, et al. (2000) Characterization of glucokinase regulatory protein-deficient mice. J Biol Chem 17, 78267831.
2Slosberg, ED, Desai, UJ, Fanelli, B, et al. (2001) Treatment of type 2 diabetes by adenoviral-mediated overexpression of the glucokinase regulatory protein. Diabetes 50, 18131820.
3Farrelly, D, Brown, KS, Tieman, A, et al. (1999) Mice mutant for glucokinase regulatory protein exhibit decreased liver glucokinase: a sequestration mechanism in metabolic regulation. Proc Natl Acad Sci U S A 965, 1451114516.
4Saxena, R, Voight, BF, Lyssenko, V, et al. (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 13311336.
5Orho-Melander, M, Melander, O, Guiducci, C, et al. (2008) Common missense variant in the glucokinase regulatory protein gene is associated with increased plasma triglyceride and C-reactive protein but lower fasting glucose concentrations. Diabetes 57, 31123121.
6Qi, Q, Wu, Y, Li, H, et al. (2009) Association of GCKR rs780094, alone or in combination with GCK rs1799884, with type 2 diabetes and related traits in a Han Chinese population. Diabetologia 52, 834843.
7Sparsø, T, Andersen, G, Nielsen, T, et al. (2008) The GCKR rs780094 polymorphism is associated with elevated fasting serum triacylglycerol, reduced fasting and OGTT-related insulinaemia, and reduced risk of type 2 diabetes. Diabetologia 51, 7075.
8Dupuis, J, Langenberg, C, Prokopenko, I, et al. (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42, 105116.
9Vaxillaire, M, Cavalcanti-Proença, C, Dechaume, A, et al. (2008) The common P446L polymorphism in GCKR inversely modulates fasting glucose and triglyceride levels and reduces type 2 diabetes risk in the DESIR prospective general French population. Diabetes 57, 22532257.
10Vaxillaire, M, Veslot, J, Dina, C, et al. (2008) Impact of common type 2 diabetes risk polymorphisms in the DESIR prospective study. Diabetes 57, 244254.
11März, W, Nauck, M, Hoffmann, MM, et al. (2004) G( − 30)A polymorphism in the pancreatic promoter of the glucokinase gene associated with angiographic coronary artery disease and type 2 diabetes mellitus. Circulation 15, 28442849.
12Rose, CS, Ek, J, Urhammer, SA, et al. (2005) − 30G>A polymorphism of the beta-cell-specific glucokinase promoter associates with hyperglycemia in the general population of whites. Diabetes 54, 30263031.
13Yamada, K, Yuan, X, Ishiyama, S, et al. (1997) Clinical characteristics of Japanese men with glucokinase gene beta-cell promoter variant. Diabetes Care 20, 11591161.
14Estruch, R, Martínez-González, MA, Corella, D, et al. (2006) Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann Intern Med 145, 111.
15Nettleton, JA, McKeown, NM, Kanoni, S, et al. (2010) Interactions of dietary whole-grain intake with fasting glucose- and insulin-related genetic loci in individuals of European descent: a meta-analysis of 14 cohort studies. Diabetes Care 33, 26842691.
16Perez-Martinez, P, Delgado-Lista, J, Garcia-Rios, A, et al. (2011) Glucokinase regulatory protein genetic variant interacts with omega-3 PUFA to influence insulin resistance and inflammation in metabolic syndrome. PLoS One; 6, e20555.
17Elosua, R, Garcia, M, Aguilar, A, et al. (2000) Validation of the Minnesota Leisure Time Physical Activity Questionnaire in Spanish women. Investigators of the MARATHON Group. Med Sci Sports Exerc 32, 14311437.
18Fernández-Ballart, JD, Piñol, JL, Zazpe, I, et al. (2010) Relative validity of a semi-quantitative food-frequency questionnaire in an elderly Mediterranean population of Spain. Br J Nutr 103, 18081816.
19Mataix, J (2003) Tabla de composición de alimentos (Food Composition Tables). Granada: University of Granada.
20Schröder, H, Fitó, M, Estruch, R, et al. (2011) A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. J Nutr 141, 11401145.
21Tam, CH, Ma, RC, So, WY, et al. (2009) Interaction effect of genetic polymorphisms in glucokinase (GCK) and glucokinase regulatory protein (GCKR) on metabolic traits in healthy Chinese adults and adolescents. Diabetes 58, 765769.
22Tam, CH, Ho, JS, Wang, Y, et al. (2010) Common polymorphisms in MTNR1B, G6PC2 and GCK are associated with increased fasting plasma glucose and impaired beta-cell function in Chinese subjects. PLoS One 8, e11428.
23Takeuchi, F, Katsuya, T, Chakrewarthy, S, et al. (2010) Common variants at the GCK, GCKR, G6PC2-ABCB11 and MTNR1B loci are associated with fasting glucose in two Asian populations. Diabetologia 53, 299308.
24Beer, NL, Tribble, ND, McCulloch, LJ, et al. (2009) The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum Mol Genet 18, 40814088.
25Webster, RJ, Warrington, NM, Weedon, MN, et al. (2009) The association of common genetic variants in the APOA5, LPL and GCK genes with longitudinal changes in metabolic and cardiovascular traits. Diabetologia 52, 106114.
26Hu, C, Zhang, R, Wang, C, et al. (2010) Effects of GCK, GCKR, G6PC2 and MTNR1B variants on glucose metabolism and insulin secretion. PLoS One 5, e11761.
27Perez-Martinez, P, Corella, D, Shen, J, et al. (2009) Association between glucokinase regulatory protein (GCKR) and apolipoprotein A5 (APOA5) gene polymorphisms and triacylglycerol concentrations in fasting, postprandial, and fenofibrate-treated states. Am J Clin Nutr 89, 391399.
28Shen, H, Pollin, TI, Damcott, CM, et al. (2009) Glucokinase regulatory protein gene polymorphism affects postprandial lipemic response in a dietary intervention study. Hum Genet 126, 567574.
29Estruch, R (2010) Anti-inflammatory effects of the Mediterranean diet: the experience of the PREDIMED study. Proc Nutr Soc 69, 333340.
30Sotos-Prieto, M, Zulet, MA & Corella, D (2010) Scientific evidence of the Mediterranean diet effects in determining intermediate and final cardiovascular disease phenotypes. Med Clin (Barc) 134, 2229.
31Fenech, M, El-Sohemy, A, Cahill, L, et al. (2011) Nutrigenetics and nutrigenomics: viewpoints on the current status and applications in nutrition research and practice. J Nutrigenet Nutrigenomics 4, 6989.
32Corella, D, Tai, ES, Sorlí, JV, et al. (2010) Association between the APOA2 promoter polymorphism and body weight in Mediterranean and Asian populations: replication of a gene-saturated fat interaction. Int J Obes (Lond) 35, 666675.
33Sotos-Prieto, M, Guillén, M, Guillem-Sáiz, P, et al. (2010) The rs1466113 polymorphism in the somatostatin receptor 2 gene is associated with obesity and food intake in a Mediterranean population. Ann Nutr Metab 57, 124–123.
34Hu, FB (2002) Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol 13, 39.
35Bendinelli, B, Masala, G, Saieva, C, et al. (2011) Fruit, vegetables, and olive oil and risk of coronary heart disease in Italian women: the EPICOR Study. Am J Clin Nutr 93, 275283.
36Polychronopoulos, E, Pounis, G, Bountziouka, V, et al. (2010) Dietary meat fats and burden of cardiovascular disease risk factors, in the elderly: a report from the MEDIS study. Lipids Health Dis 9, 30.

Keywords

Type Description Title
PDF
Supplementary materials

Corella supplementary material
Tables

 PDF (92 KB)
92 KB

Relevant associations of the glucokinase regulatory protein/glucokinase gene variation with TAG concentrations in a high-cardiovascular risk population: modulation by the Mediterranean diet

  • Mercedes Sotos-Prieto (a1) (a2) (a3), Marisa Guillén (a1), Jose Vicente Sorli (a1) (a2), Olga Portolés (a1), Patricia Guillem-Saiz (a1) (a2), Jose Ignacio Gonzalez (a1) (a2), Lu Qi (a3) and Dolores Corella (a1) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed