Skip to main content Accessibility help
×
Home

Reduced plasma concentration of branched-chain amino acids in sarcopenic older subjects: a cross-sectional study

  • Inger Ottestad (a1), Stine M. Ulven (a1) (a2), Linn K. L. Øyri (a1) (a3), Kristin S. Sandvei (a1), Gyrd O. Gjevestad (a1) (a4), Asta Bye (a2) (a5), Navida A. Sheikh (a2), Anne S. Biong (a4), Lene F. Andersen (a1) and Kirsten B. Holven (a1) (a3)...

Abstract

Branched-chain amino acids (BCAA) are essential amino acids that are necessary for muscle mass maintenance. Little is known about the plasma concentrations of BCAA and the protein intake in relation to sarcopenia. We aimed to compare the non-fasting plasma concentrations of the BCAA and the dietary protein intake between sarcopenic and non-sarcopenic older adults. Norwegian older home-dwelling adults (≥70 years) were invited to a cross-sectional study with no other exclusion criteria than age. Sarcopenic subjects were defined by the diagnostic criteria by the European Working Group on Sarcopenia in Older People. Non-fasting plasma concentrations of eight amino acids were quantified using NMR spectroscopy. Protein intake was assessed using 2×24-h dietary recalls. In this study, ninety out of 417 subjects (22 %) were sarcopenic, and more women (32 %) than men (11 %) were sarcopenic (P<0·0001). Sex-adjusted non-fasting plasma concentrations of leucine and isoleucine, and the absolute intake of protein (g/d), were significantly lower among the sarcopenic subjects, when compared with non-sarcopenic subjects (P=0·003, P=0·026 and P=0·003, respectively). A similar protein intake was observed in the two groups when adjusted for body weight (BW) and sex (1·1 g protein/kg BW per d; P=0·50). We show that sarcopenia is associated with reduced non-fasting plasma concentration of the BCAA leucine and isoleucine, and lower absolute intake of protein. More studies are needed to clarify the clinical relevance of these findings, related to maintenance of muscle mass and prevention of sarcopenia.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Reduced plasma concentration of branched-chain amino acids in sarcopenic older subjects: a cross-sectional study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Reduced plasma concentration of branched-chain amino acids in sarcopenic older subjects: a cross-sectional study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Reduced plasma concentration of branched-chain amino acids in sarcopenic older subjects: a cross-sectional study
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: I. Ottestad, email inger.ottestad@medisin.uio.no

References

Hide All
1. Guralnik, JM, Simonsick, EM, Ferrucci, L, et al. (1994) A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol 49, M85M94.
2. Newman, AB, Kupelian, V, Visser, M, et al. (2006) Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci 61, 7277.
3. Batsis, JA, Mackenzie, TA, Barre, LK, et al. (2014) Sarcopenia, sarcopenic obesity and mortality in older adults: results from the National Health and Nutrition Examination Survey III. Eur J Clin Nutr 68, 10011007.
4. Verlaan, S, Aspray, TJ, Bauer, JM, et al. (2017) Nutritional status, body composition, and quality of life in community-dwelling sarcopenic and non-sarcopenic older adults: a case-control study. Clin Nutr 36, 267274.
5. Beaudart, C, Reginster, JY, Petermans, J, et al. (2015) Quality of life and physical components linked to sarcopenia: the SarcoPhAge study. Exp Gerontol 69, 103110.
6. Houston, DK, Nicklas, BJ, Ding, J, et al. (2008) Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the Health, Aging, and Body Composition (Health ABC) Study. Am J Clin Nutr 87, 150155.
7. Cruz-Jentoft, AJ, Baeyens, JP, Bauer, JM, et al. (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing 39, 412423.
8. Deutz, NE, Bauer, JM, Barazzoni, R, et al. (2014) Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin Nutr 33, 929936.
9. Ter Borg, S, de Groot, LC, Mijnarends, DM, et al. (2016) Differences in nutrient intake and biochemical nutrient status between sarcopenic and nonsarcopenic older adults – results from The Maastricht Sarcopenia Study. J Am Med Dir Assoc 17, 393401.
10. Oh, C, Jeon, BH, Reid Storm, SN, et al. (2017) The most effective factors to offset sarcopenia and obesity in the older Korean: Physical activity, vitamin D, and protein intake. Nutrition 33, 169173.
11. Isanejad, M, Mursu, J, Sirola, J, et al. (2016) Dietary protein intake is associated with better physical function and muscle strength among elderly women. Br J Nutr 115, 12811291.
12. Wahren, J, Felig, P & Hagenfeldt, L (1976) Effect of protein ingestion on splanchnic and leg metabolism in normal man and in patients with diabetes mellitus. J Clin Invest 57, 987999.
13. Elia, M & Livesey, G (1983) Effects of ingested steak and infused leucine on forelimb metabolism in man and the fate of the carbon skeletons and amino groups of branched-chain amino acids. Clin Sci 64, 517526.
14. Brosnan, JT & Brosnan, ME (2006) Branched-chain amino acids: enzyme and substrate regulation. J Nutr 136, 207s211s.
15. Nishioka, M, Imaizumi, A, Ando, T, et al. (2013) The overnight effect of dietary energy balance on postprandial plasma free amino acid (PFAA) profiles in Japanese adult men. PLOS ONE 8, e62929.
16. Forslund, AH, El-Khoury, AE, Olsson, RM, et al. (1999) Effect of protein intake and physical activity on 24-h pattern and rate of macronutrient utilization. Am J Physiol 276, E964E976.
17. Bohe, J, Low, A, Wolfe, RR, et al. (2003) Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: a dose-response study. J Physiol 552, 315324.
18. Atherton, PJ, Smith, K, Etheridge, T, et al. (2010) Distinct anabolic signalling responses to amino acids in C2C12 skeletal muscle cells. Amino Acids 38, 15331539.
19. Pasiakos, SM & McClung, JP (2011) Supplemental dietary leucine and the skeletal muscle anabolic response to essential amino acids. Nutr Rev 69, 550557.
20. Deutz, NE & Wolfe, RR (2013) Is there a maximal anabolic response to protein intake with a meal? Clin Nutr 32, 309313.
21. Kim, IY, Schutzler, S, Schrader, A, et al. (2016) The anabolic response to a meal containing different amounts of protein is not limited by the maximal stimulation of protein synthesis in healthy young adults. J Physiol Endocrinol Metab 310, E73E80.
22. Baum, JI, Kim, IY & Wolfe, RR (2016) Protein consumption and the elderly: what is the optimal level of intake? Nutrients 8, 6.
23. Cuthbertson, D, Smith, K, Babraj, J, et al. (2005) Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J 19, 422424.
24. Wolfe, RR (2012) The role of dietary protein in optimizing muscle mass, function and health outcomes in older individuals. Br J Nutr 108, Suppl. 2, S88S93.
25. Lustgarten, MS, Price, LL, Chale, A, et al. (2014) Branched chain amino acids are associated with muscle mass in functionally limited older adults. Gerontology A Biol Sci Med Sci 69, 717724.
26. ter Borg, S, Verlaan, S, Mijnarends, DM, et al. (2015) Macronutrient intake and inadequacies of community-dwelling older adults, a systematic review. Ann Nutr Metab 66, 242255.
27. Park, S, Ham, JO & Lee, BK (2014) A positive association of vitamin D deficiency and sarcopenia in 50 year old women, but not men. Clin Nutr 33, 900905.
28. Ottestad, I (2017) Intake of a protein-enriched milk and effects on muscle mass and strength. A 12-week randomized placebo controlled trial among community-dwelling older adults. J Nutr Health Aging 21, 11601169.
29. Janssen, I, Heymsfield, SB, Baumgartner, RN, et al. (2000) Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol 89, 465471.
30. Cavazzini, C, Conti, M, Bandinelli, S, et al. (2004) Screening for poor performance of lower extremity in primary care: the Camucia Project. Aging Clin Exp Res 16, 331336.
31. Tombaugh, TN & McIntyre, NJ (1992) The mini-mental state examination: a comprehensive review. J Am Geriatr Soc 40, 922935.
32. Fischer, K, Kettunen, J, Wurtz, P, et al. (2014) Biomarker profiling by nuclear magnetic resonance spectroscopy for the prediction of all-cause mortality: an observational study of 17,345 persons. PLoS Med 11, e1001606.
33. Inouye, M, Kettunen, J, Soininen, P, et al. (2010) Metabonomic, transcriptomic, and genomic variation of a population cohort. Mol Syst Biol 6, 441.
34. Soininen, P, Kangas, AJ, Wurtz, P, et al. (2009) High-throughput serum NMR metabonomics for cost-effective holistic studies on systemic metabolism. Analyst 134, 17811785.
35. Kettunen, J, Demirkan, A, Wurtz, P, et al. (2016) Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat Commun 7, 11122.
36. Myhre, JB, Loken, EB, Wandel, M, et al. (2015) The contribution of snacks to dietary intake and their association with eating location among Norwegian adults – results from a cross-sectional dietary survey. BMC Public Health 15, 369.
37. Nordic Council of Ministers & Nordic Nutrition Recommendations (2012) Intergrating Nutrition and Physical Activity, 5th ed. Nord 2014:02. Copenhagen: Nordic Council of Ministers & Nordic Nutrition Recommendations.
38. Gorissen, SH, Horstman, AM, Franssen, R, et al. (2017) Habituation to low or high protein intake does not modulate basal or postprandial muscle protein synthesis rates: a randomized trial. Am J Clin Nutr 105, 332342.
39. Soeters, PB, de Jong, CH & Deutz, NE (2001) The protein sparing function of the gut and the quality of food protein. Clin Nutr 20, 9799.
40. Meng, X, Zhu, K, Devine, A, et al. (2009) A 5-year cohort study of the effects of high protein intake on lean mass and BMC in elderly postmenopausal women. J Bone Miner Res 24, 18271834.
41. Katsanos, CS, Kobayashi, H, Sheffield-Moore, M, et al. (2005) Aging is associated with diminished accretion of muscle proteins after the ingestion of a small bolus of essential amino acids. Am J Clin Nutr 82, 10651073.
42. Moore, DR, Churchward-Venne, TA, Witard, O, et al. (2015) Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. Gerontology A Biol Sci Med Sci 70, 5762.
43. Paddon-Jones, D, Sheffield-Moore, M, Zhang, XJ, et al. (2004) Amino acid ingestion improves muscle protein synthesis in the young and elderly. J Physiol Endocrinol Metab 286, E321E328.
44. Paddon-Jones, D & Rasmussen, BB (2009) Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care 12, 8690.
45. Bauer, J, Biolo, G, Cederholm, T, et al. (2013) Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J Am Med Dir Assoc 14, 542559.
46. Tieland, M, Borgonjen-Van den Berg, KJ, van Loon, LJ, et al. (2012) Dietary protein intake in community-dwelling, frail, and institutionalized elderly people: scope for improvement. Eur J Nutr 51, 173179.
47. Tieland, M, Borgonjen-Van den Berg, KJ, Van Loon, LJ, et al. (2015) Dietary protein intake in dutch elderly people: a focus on protein sources. Nutrients 7, 96979706.
48. Mendonca, N, Hill, TR, Granic, A, et al. (2016) Macronutrient intake and food sources in the very old: analysis of the Newcastle 85+ Study. Br J Nutr 115, 21702180.
49. Mamerow, MM, Mettler, JA, English, KL, et al. (2014) Dietary protein distribution positively influences 24-h muscle protein synthesis in healthy adults. J Nutr 144, 876880.
50. Kim, IY, Schutzler, S, Schrader, A, et al. (2015) Quantity of dietary protein intake, but not pattern of intake, affects net protein balance primarily through differences in protein synthesis in older adults. J Physiol Endocrinol Metab 308, E21E28.
51. European Food Safety Authority (2009) General principles for the collection of national food consumption data in the view of a pan-European dietary survey. EFSA J 7, 1435.
52. Carayol, M, Licaj, I, Achaintre, D, et al. (2015) Reliability of serum metabolites over a two-year period: a targeted metabolomic approach in fasting and non-fasting samples from EPIC. PLOS ONE 10, e0135437.
53. Cruz-Jentoft, AJ, Landi, F, Schneider, SM, et al. (2014) Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 43, 748759.

Keywords

Type Description Title
PDF
Supplementary materials

Ottestad et al. supplementary material
Table S1

 PDF (90 KB)
90 KB
PDF
Supplementary materials

Ottestad et al. supplementary material
Table S2

 PDF (183 KB)
183 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed