Skip to main content Accessibility help
×
Home

Rat liver mitochondrial membrane characteristics and mitochondrial functions are more profoundly altered by dietary lipid quantity than by dietary lipid quality: effect of different nutritional lipid patterns

  • Manar Aoun (a1) (a2), Christine Feillet-Coudray (a1), Gilles Fouret (a1), Béatrice Chabi (a1), David Crouzier (a3), Carla Ferreri (a4), Chryssostomos Chatgilialoglu (a4), Chantal Wrutniak-Cabello (a1), Jean Paul Cristol (a2), Marie-Annette Carbonneau (a2) and Charles Coudray (a1)...

Abstract

Dietary lipids are known to affect the composition of the biological membrane and functions that are involved in cell death and survival. The mitochondrial respiratory chain enzymes are membrane protein complexes whose function depends on the composition and fluidity of the mitochondrial membrane lipid. The present study aimed at investigating the impact of different nutritional patterns of dietary lipids on liver mitochondrial functions. A total of forty-eight Wistar male rats were divided into six groups and fed for 12 weeks with a basal diet, lard diet or fish oil diet, containing either 50 or 300 g lipid/kg. The 30 % lipid intake increased liver NEFA, TAG and cholesterol levels, increased mitochondrial NEFA and TAG, and decreased phospholipid (PL) levels. SFA, PUFA and unsaturation index (UI) increased, whereas MUFA and trans-fatty acids (FA) decreased in the mitochondrial membrane PL in 30 % fat diet-fed rats compared with 5 % lipid diet-fed rats. PL UI increased with fish oil diet v. basal and lard-rich diets, and PL trans-FA increased with lard diet v. basal and fish oil diets. The 30 % lipid diet intake increased mitochondrial membrane potential, membrane fluidity, mitochondrial respiration and complex V activity, and decreased complex III and IV activities. With regard to lipid quality effects, β-oxidation decreased with the intake of basal or fish oil diets compared with that of the lard diet. The intake of a fish oil diet decreased complex III and IV activities compared with both the basal and lard diets. In conclusion, the characteristics and mitochondrial functions of the rat liver mitochondrial membrane are more profoundly altered by the quantity of dietary lipid than by its quality, which may have profound impacts on the pathogenesis and development of non-alcoholic fatty liver disease.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Rat liver mitochondrial membrane characteristics and mitochondrial functions are more profoundly altered by dietary lipid quantity than by dietary lipid quality: effect of different nutritional lipid patterns
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Rat liver mitochondrial membrane characteristics and mitochondrial functions are more profoundly altered by dietary lipid quantity than by dietary lipid quality: effect of different nutritional lipid patterns
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Rat liver mitochondrial membrane characteristics and mitochondrial functions are more profoundly altered by dietary lipid quantity than by dietary lipid quality: effect of different nutritional lipid patterns
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr C. Coudray, fax +33 4 67 54 56 94, email coudray@supagro.inra.fr

References

Hide All
1 Bullo, M, Casas-Agustench, P, Amigo-Correig, P, et al. (2007) Inflammation, obesity and comorbidities: the role of diet. Public Health Nutr 10, 11641172.
2 Cave, M, Deaciuc, I, Mendez, C, et al. (2007) Nonalcoholic fatty liver disease: predisposing factors and the role of nutrition. J Nutr Biochem 18, 184195.
3 Moore, JB (2010) Non-alcoholic fatty liver disease: the hepatic consequence of obesity and the metabolic syndrome. Proc Nutr Soc 69, 211–120.
4 Gentile, CL & Pagliassotti, MJ (2008) The role of fatty acids in the development and progression of nonalcoholic fatty liver disease. J Nutr Biochem 19, 567576.
5 Lee, AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta 1666, 6287.
6 Rohrbach, S (2009) Effects of dietary polyunsaturated fatty acids on mitochondria. Curr Pharm 15, 41034116.
7 Aoun, M, Michel, F, Fouret, G, et al. (2010) A polyphenol extract modifies quantity but not quality of liver fatty acid content in high-fat-high-sucrose diet-fed rats: possible implication of the sirtuin pathway. Br J Nutr 104, 17601770.
8 Simkiss, K (1998) Cell membranes; barriers, regulators and transducers? Comp Biochem Physiol A Mol Integr Physiol 120, 1722.
9 Ghafoorunissa, (2009) Impact of quality of dietary fat on serum cholesterol and coronary heart disease: focus on plant sterols and other non-glyceride components. Natl Med J India 22, 126132.
10 Johannsen, DL & Ravussin, E (2009) The role of mitochondria in health and disease. Curr Opin Pharmacol 9, 780786.
11 Barzanti, V, Battino, M, Baracca, A, et al. (1994) The effect of dietary lipid changes on the fatty acid composition and function of liver, heart and brain mitochondria in the rat at different ages. Br J Nutr 71, 193202.
12 Izpisua, JC, Barber, T, Cabo, J, et al. (1989) Lipid composition, fluidity and enzymatic activities of rat liver plasma and mitochondrial membranes in dietary obese rats. Int J Obes 13, 531542.
13 Yamaoka, S, Urade, R & Kito, M (1988) Mitochondrial function in rats is affected by modification of membrane phospholipids with dietary sardine oil. J Nutr 118, 290296.
14 Croset, M & Kinsella, JE (1989) Changes in phospholipid fatty acid composition of mouse cardiac organelles after feeding graded amounts of docosahexaenoate in presence of high levels of linoleate. Effect on cardiac ATPase activities. Ann Nutr Metab 33, 125142.
15 Robblee, NM & Clandinin, MT (1984) Effect of dietary fat level and polyunsaturated fatty acid content on the phospholipid composition of rat cardiac mitochondrial membranes and mitochondrial ATPase activity. J Nutr 114, 263269.
16 Ide, T, Murata, M & Sugano, M (1996) Stimulation of the activities of hepatic fatty acid oxidation enzymes by dietary fat rich in alpha-linolenic acid in rats. J Lipid Res 37, 448463.
17 Kabir, Y & Ide, T (1996) Activity of hepatic fatty acid oxidation enzymes in rats fed alpha-linolenic acid. Biochim Biophys Acta 1304, 105119.
18 Oliveira, CP, Coelho, AM, Barbeiro, HV, et al. (2006) Liver mitochondrial dysfunction and oxidative stress in the pathogenesis of experimental nonalcoholic fatty liver disease. Braz J Med Biol Res 39, 189194.
19 Buettner, R, Parhofer, KG, Woenckhaus, M, et al. (2006) Defining high-fat-diet rat models: metabolic and molecular effects of different fat types. J Mol Endocrinol 36, 485501.
20 Hill, JO, Peters, JC, Lin, D, et al. (1993) Lipid accumulation and body fat distribution is influenced by type of dietary fat fed to rats. Int J Obes Relat Metab Disord 17, 223236.
21 Toyomizu, M, Mehara, K, Kamada, T, et al. (1992) Effects of various fat sources on growth and hepatic mitochondrial function in mice. Comp Biochem Physiol Comp Physiol 101, 613618.
22 Power, GW, Yaqoob, P, Harvey, DJ, et al. (1994) The effect of dietary lipid manipulation on hepatic mitochondrial phospholipid fatty acid composition and carnitine palmitoyltransferase I activity. Biochem Mol Biol Int 34, 671684.
23 Buettner, R, Scholmerich, J, Bollheimer, LC, et al. (2007) High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring) 15, 798808.
24 Frezza, C, Cipolat, S, Scorrano, L, et al. (2007) Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat Protoc 2, 287295.
25 Bradford, MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248254.
26 Folch, J, Lees, M & Sloane Stanley, GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226, 497509.
27 Bartlett, GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234, 466468.
28 Ferreri, C & Chatgilialoglu, C (2009) Membrane lipidomics and the geometry of unsaturated fatty acids: from biomimetic models to biological consequences. In Lipidomics, vol 1: Methods and Protocols, pp. 391412 [Armstrong, D, editor]. New York: Humana Press.
29 Puca, AA, Andrew, P, Novelli, V, et al. (2008) Fatty acid profile of erythrocyte membranes as possible biomarker of longevity. Rejuvenation Res 11, 6372.
30 Debouzy, JC, Crouzier, D & Gadelle, A (2007) Physicochemical properties and membrane interactions of per(6-desoxy-6-halogenated) cyclodextrins. Ann Pharm Fr 65, 331341.
31 Baracca, A, Sgarbi, G, Solaini, G, et al. (2003) Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F(0) during ATP synthesis. Biochim Biophys Acta 1606, 137146.
32 Srere, P (1969) Citrate synthase. Methods Enzymol 13, 311.
33 Feillet-Coudray, C, Sutra, T, Fouret, G, et al. (2009) Oxidative stress in rats fed a high-fat high-sucrose diet and preventive effect of polyphenols: involvement of mitochondrial and NAD(P)H oxidase systems. Free Radic Biol Med 46, 624632.
34 Janssen, AJ, Trijbels, FJ, Sengers, RC, et al. (2007) Spectrophotometric assay for complex I of the respiratory chain in tissue samples and cultured fibroblasts. Clin Chem 53, 729734.
35 Rustin, P, Chretien, D, Bourgeron, T, et al. (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228, 3551.
36 Wharton, D & Tzagoloff, A (1967) Cytochrome oxidase from beef heart mitochondria. Methods Enzymol 10, 245250.
37 Teodoro, JS, Rolo, AP, Duarte, FV, et al. (2008) Differential alterations in mitochondrial function induced by a choline-deficient diet: understanding fatty liver disease progression. Mitochondrion 8, 367376.
38 Clayton, PT, Eaton, S, Aynsley-Green, A, et al. (2001) Hyperinsulinism in short-chain l-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of beta-oxidation in insulin secretion. J Clin Invest 108, 457465.
39 Roach, C, Feller, SE, Ward, JA, et al. (2004) Comparison of cis and trans fatty acid containing phosphatidylcholines on membrane properties. Biochemistry 43, 63446351.
40 Mujkosova, J, Ferko, M, Humenik, P, et al. (2008) Seasonal variations in properties of healthy and diabetic rat heart mitochondria: Mg2+-ATPase activity, content of conjugated dienes and membrane fluidity. Physiol Res 57, S75S82.
41 Ferko, M, Habodaszova, D, Waczulikova, I, et al. (2008) Endogenous protective mechanisms in remodeling of rat heart mitochondrial membranes in the acute phase of streptozotocin-induced diabetes. Physiol Res 57, S67S73.
42 Raffaella, C, Francesca, B, Italia, F, et al. (2008) Alterations in hepatic mitochondrial compartment in a model of obesity and insulin resistance. Obesity (Silver Spring) 16, 958964.
43 Schmitz, G & Ecker, J (2008) The opposing effects of n-3 and n-6 fatty acids. Prog Lipid Res 47, 147155.
44 Hulbert, AJ (2005) On the importance of fatty acid composition of membranes for aging. J Theor Biol 234, 277288.
45 Stillwell, W, Jenski, LJ, Crump, FT, et al. (1997) Effect of docosahexaenoic acid on mouse mitochondrial membrane properties. Lipids 32, 497506.
46 Romestaing, C, Piquet, MA, Bedu, E, et al. (2007) Long term highly saturated fat diet does not induce NASH in Wistar rats. Nutr Metab (Lond) 4, 4.

Keywords

Type Description Title
WORD
Supplementary Table

Coudray Supplementary Table
Supplementary Table 1: Lipid diet composition (% of total lipid)

 Word (35 KB)
35 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed