Skip to main content Accessibility help
×
Home

Prevalence and risk factors of impaired fasting glucose and diabetes among Chinese children and adolescents: a national observational study

  • Zhenghe Wang (a1), Zhiyong Zou (a1), Haijun Wang (a2), Jin Jing (a3), Jiayou Luo (a4), Xin Zhang (a5), Chunyan Luo (a6), Haiping Zhao (a7), Dehong Pan (a8), Jun Ma (a1), Bin Dong (a1) and Yinghua Ma (a1)...

Abstract

The prevalence of impaired fasting glucose (IFG) and diabetes mellitus (DM) has reportedly increased significantly among Chinese children and adolescents. We aimed to examine the prevalence of IFG and DM, the disparities in sex and region and related risk factors among Chinese children and adolescents. A total of 16 434 Chinese children aged 6–17 years were selected from a national cross-sectional survey, and fasting glucose was measured for all participants. Overall, mean fasting plasma glucose (FPG) concentration was (4·64 (sd 0·51)) mmol/l, and the prevalence of DM and IFG was 0·10 and 1·89 %, respectively. Compared with girls, boys had higher FPG concentration (4·69 v. 4·58 mmol/l, r 0·107, P<0·001) and IFG prevalence (2·67 v. 1·07 %, rφ 0·059, P<0·001). Compared with rural children and adolescents, urban children and adolescent had higher FPG concentration (4·65 v. 4·62 mmol/l, r 0·029, P<0·001) and DM prevalence (0·15 v. 0·05 %, rφ 0·016, P<0·01). In addition, self-reported fried foods intake and overweight/obesity were positively associated with IFG, and the proportion of consuming fried foods more than or equal to once per week and overweight/obesity prevalence in boys and urban children and adolescents were significantly higher than girls and rural children and adolescents, respectively (P<0·05). Although the prevalence of IFG and DM was relatively low in Chinese children and adolescents, sex and region disparities were observed, which may be associated with differences in overweight/obesity prevalence and dietary factors.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Prevalence and risk factors of impaired fasting glucose and diabetes among Chinese children and adolescents: a national observational study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Prevalence and risk factors of impaired fasting glucose and diabetes among Chinese children and adolescents: a national observational study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Prevalence and risk factors of impaired fasting glucose and diabetes among Chinese children and adolescents: a national observational study
      Available formats
      ×

Copyright

Corresponding author

*Corresponding authors: B. Dong, fax +86 10 82801178, email bindong@bjmu.edu.cn; Y. Ma, email yinghuama@bjmu.edu.cn

References

Hide All
1. Viner, R, White, B & Christie, D (2017) Type 2 diabetes in adolescents: a severe phenotype posing major clinical challenges and public health burden. Lancet 389, 22522260.
2. International Diabetes Federation, (2015) IDF Diabetes Atlas , 7th ed. Brussels: International Diabetes Federation.
3. Nadeau, K & Dabelea, D (2008) Epidemiology of type 2 diabetes in children and adolescents. Endocr Res 33, 3558.
4. Duncan, GE (2006) Prevalence of diabetes and impaired fasting glucose levels among US adolescents: National Health and Nutrition Examination Survey, 1999–2002. Arch Pediatr Adolesc Med 160, 523528.
5. SEARCH for Diabetes in Youth Study Group, Liese, AD, D’Agostino, RB Jr, et al. (2006) The burden of diabetes mellitus among US youth: prevalence estimates from the SEARCH for Diabetes in Youth Study. Pediatrics 118, 15101518.
6. Fu, JF, Liang, L, Gong, CX, et al. (2013) Status and trends of diabetes in Chinese children: analysis of data from 14 medical centers. World J Pediatr 9, 127134.
7. Oester, IM, Kloppenborg, JT, Olsen, BS, et al. (2016) Type 2 diabetes mellitus in Danish children and adolescents in 2014. Pediatr Diabetes 17, 368373.
8. Smyth, S & Heron, A (2006) Diabetes and obesity: the twin epidemics. Nat Med 12, 7580.
9. American Diabetes Association, (2011) Diagnosis and classification of diabetes mellitus. Diabetes Care 34, Suppl. 1, S62S69.
10. Wu, H, Zhong, J, Yu, M, et al. (2017) Incidence and time trends of type 2 diabetes mellitus in youth aged 5–19 years: a population-based registry in Zhejiang, China, 2007 to 2013. BMC Pediatr 17, 85.
11. Zhang, Y (2016) Study on urban and rural medical and health resources allocation balance in China. Med Soc 1, 79.
12. Chen, Y, Ma, L, Ma, Y, et al. (2015) A national school-based health lifestyles interventions among Chinese children and adolescents against obesity: rationale, design and methodology of a randomized controlled trial in China. BMC Public Health 15, 210.
13. Craig, CL, Marshall, AL, Sjostrom, M, et al. (2003) International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 35, 13811395.
14. American Diabetes Association (2012) Diagnosis and classification of diabetes mellitus. Diabetes Care 35, Suppl. 1, S64S71.
15. Ji, CY, Working Group on Obesity in China (2005) Report on childhood obesity in China (1)--body mass index reference for screening overweight and obesity in Chinese school-age children. Biomed Environ Sci 18, 390400.
16. Li, H, Zong, XN, Ji, CY, et al. (2010) [Body mass index cut-offs for overweight and obesity in Chinese children and adolescents aged 2–18 years]. Zhonghua Liu Xing Bing Xue Za Zhi 31, 616620.
17. Kuruvilla, S, Bustreo, F, Kuo, T, et al. (2016) The global strategy for women’s, children’s and adolescents’ health (2016–2030): a roadmap based on evidence and country experience. Bull World Health Organ 94, 398400.
18. de Onis, M, Onyango, AW, Borghi, E, et al. (2007) Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ 85, 660667.
19. Brown, LD, Cai, TT & Dasgupta, A (2001) Interval estimation for a binomial proportion. Stat Sci 16, 101117.
20. Agbre-Yace, ML, Oyenusi, EE, Oduwole, AO, et al. (2015) Prevalence of diabetes mellitus among children and adolescents in the district of Abidjan in Cote d’Ivoire: a population-based study. J Diabetes Metab Disord 15, 38.
21. Dabelea, D, Mayer-Davis, EJ, Saydah, S, et al. (2014) Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA 311, 17781786.
22. Al-Rubeaan, K (2015) National surveillance for type 1, type 2 diabetes and prediabetes among children and adolescents: a population-based study (SAUDI-DM). J Epidemiol Community Health 69, 10451051.
23. Li, C, Ford, ES, Zhao, G, et al. (2009) Prevalence of pre-diabetes and its association with clustering of cardiometabolic risk factors and hyperinsulinemia among U.S. adolescents: National Health and Nutrition Examination Survey 2005–2006. Diabetes Care 32, 342347.
24. Bahendeka, S, Wesonga, R, Mutungi, G, et al. (2016) Prevalence and correlates of diabetes mellitus in Uganda: a population-based national survey. Trop Med Int Health 21, 405416.
25. Choi, HK, Willett, WC, Stampfer, MJ, et al. (2005) Dairy consumption and risk of type 2 diabetes mellitus in men: a prospective study. Arch Intern Med 165, 9971003.
26. Liu, S, Choi, HK, Ford, E, et al. (2006) A prospective study of dairy intake and the risk of type 2 diabetes in women. Diabetes Care 29, 15791584.
27. Pittas, AG, Lau, J, Hu, FB, et al. (2007) The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab 92, 20172029.
28. Zemel, MB, Donnelly, JE, Smith, BK, et al. (2008) Effects of dairy intake on weight maintenance. Nutr Metab (Lond) 5, 28.
29. Cahill, LE, Pan, A, Chiuve, SE, et al. (2014) Fried-food consumption and risk of type 2 diabetes and coronary artery disease: a prospective study in 2 cohorts of US women and men. Am J Clin Nutr 100, 667675.
30. Alhazmi, A, Stojanovski, E, McEvoy, M, et al. (2014) The association between dietary patterns and type 2 diabetes: a systematic review and meta-analysis of cohort studies. J Hum Nutr Diet 27, 251260.
31. Li, A, Ha, Y, Wang, F, et al. (2012) Determination of thermally induced trans-fatty acids in soybean oil by attenuated total reflectance Fourier transform infrared spectroscopy and gas chromatography analysis. J Agric Food Chem 60, 1070910713.
32. de Souza, RJ, Mente, A, Maroleanu, A, et al. (2015) Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ 351, h3978.
33. King, AJ & Priesbe, TJ (2006) Concerns about methodology and use of 3,5,7-cholestatriene as a marker of oxidative stress response to “Relationship between carotid atherosclerosis and erythrocyte membrane cholesterol oxidation products in type 2 diabetic patients”. Diabetes Res Clin Pract 72, 331334.
34. Neeland, IJ, Turer, AT, Ayers, CR, et al. (2012) Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults. JAMA 308, 11501159.
35. Manson, JE, Nathan, DM, Krolewski, AS, et al. (1992) A prospective study of exercise and incidence of diabetes among US male physicians. JAMA 268, 6367.
36. Hu, FB, Manson, JE, Stampfer, MJ, et al. (2001) Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med 345, 790797.
37. Yates, T, Khunti, K, Bull, F, et al. (2007) The role of physical activity in the management of impaired glucose tolerance: a systematic review. Diabetologia 50, 11161126.
38. Albright, A, Franz, M, Hornsby, G, et al. (2000) American College of Sports Medicine position stand. Exercise and type 2 diabetes. Med Sci Sports Exerc 32, 13451360.
39. Goodyear, LJ & Kahn, BB (1998) Exercise, glucose transport, and insulin sensitivity. Annu Rev Med 49, 235261.
40. Ivy, JL (1987) The insulin-like effect of muscle contraction. Exerc Sport Sci Rev 15, 2951.
41. Despres, JP (1997) Visceral obesity, insulin resistance, and dyslipidemia: contribution of endurance exercise training to the treatment of the plurimetabolic syndrome. Exerc Sport Sci Rev 25, 271300.
42. Kriska, A, Delahanty, L, Edelstein, S, et al. (2013) Sedentary behavior and physical activity in youth with recent onset of type 2 diabetes. Pediatrics 131, e850e856.
43. de Winter, M, Rioux, BV, Boudreau, JG, et al. (2018) Physical activity and sedentary patterns among metabolically healthy individuals living with obesity. J Diabetes Res 2018, 7496768.

Keywords

Prevalence and risk factors of impaired fasting glucose and diabetes among Chinese children and adolescents: a national observational study

  • Zhenghe Wang (a1), Zhiyong Zou (a1), Haijun Wang (a2), Jin Jing (a3), Jiayou Luo (a4), Xin Zhang (a5), Chunyan Luo (a6), Haiping Zhao (a7), Dehong Pan (a8), Jun Ma (a1), Bin Dong (a1) and Yinghua Ma (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed