Skip to main content Accessibility help
×
Home

Potato consumption and risk of pancreatic cancer in the HELGA cohort

  • Lene A. Åsli (a1), Tonje Braaten (a1), Anja Olsen (a2), Anne Tjønneland (a2), Kim Overvad (a3), Lena Maria Nilsson (a4) (a5), Frida Renström (a6) (a7), Eiliv Lund (a1) and Guri Skeie (a1)...

Abstract

Potatoes have been a staple food in many countries throughout the years. Potatoes have a high glycaemic index (GI) score, and high GI has been associated with several chronic diseases and cancers. Still, the research on potatoes and health is scarce and contradictive, and we identified no prospective studies that had investigated the association between potatoes as a single food and the risk of pancreatic cancer. The aim of this study was to prospectively investigate the association between potato consumption and pancreatic cancer among 114 240 men and women in the prospective HELGA cohort, using Cox proportional hazard models. Information on diet (validated FFQ’s), lifestyle and health was collected by means of a questionnaire, and 221 pancreatic cancer cases were identified through cancer registries. The mean follow-up time was 11·4 (95 % CI 0·3, 16·9) years. High consumption of potatoes showed a non-significantly higher risk of pancreatic cancer in the adjusted model (hazard ratio (HR) 1·44; 95 % CI 0·93, 2·22, P for trend 0·030) when comparing the highest v. the lowest quartile of potato consumption. In the sex-specific analyses, significant associations were found for females (HR 2·00; 95 % CI 1·07, 3·72, P for trend 0·020), but not for males (HR 1·01; 95 % CI 0·56, 1·84, P for trend 0·34). In addition, we explored the associations by spline regression, and the absence of dose–response effects was confirmed. In this study, high potato consumption was not consistently associated with a higher risk of pancreatic cancer. Further studies with larger populations are needed to explore the possible sex difference.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Potato consumption and risk of pancreatic cancer in the HELGA cohort
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Potato consumption and risk of pancreatic cancer in the HELGA cohort
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Potato consumption and risk of pancreatic cancer in the HELGA cohort
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: L. A. Åsli, fax +47 77 64 48 31, email lene.a.asli@uit.no

Footnotes

Hide All

Disclaimer: Some of the data in this article are from the Cancer Registry of Norway. The Cancer Registry of Norway is not responsible for the analysis or interpretation of the data presented

Footnotes

References

Hide All
1. Ferlay, J, Shin, H-R, Bray, F, et al. (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127, 28932917.
2. Center, MM, Jemal, A & Ward, E (2009) International trends in colorectal cancer incidence rates. Cancer Epidemiol Biomarkers Prev 18, 16881694.
3. Parkin, DM (2004) International variation. Oncogene 23, 63296340.
4. Yeo, TP & Lowenfels, AB (2012) Demographics and epidemiology of pancreatic cancer. Cancer J 18, 477484.
5. World Cancer Research Fund/American Institute for Cancer Research (2012) Continous update project report. Food, nutrition, physical activity, and the prevention of pancreatic cancer. http://www.dietandcancerreport.org (accessed June 2016).
6. American Cancer Society (2016) Learn about cancer. Pancreatic cancer risk faktors. http://www.cancer.org/cancer/pancreaticcancer/detailedguide/pancreatic-cancer-risk-factors (accessed June 2016).
7. Zaheer, K & Akhtar, MH (2016) Potato production, usage, and nutrition – a review. Crit Rev Food Sci Nutr 56, 711721.
8. Totland, TH, Melnes, BK, Lundberg-Hallèn, N, et al. (2012) Norkost 3. En landsomfattende kostholdsundersøkelse blant menn og kvinner i Norge i alderen 18-70 år, 2010-11 (Nationwide Dietary Survey in Norway Among Men and Women Aged 18-70 years, 2010–11). Oslo: University of Oslo, Norwegian Food Safety Authority, Norwegian Directorate of Health.
9. McGill, CR, Kurilich, AC & Davignon, J (2013) The role of potatoes and potato components in cardiometabolic health: a review. Ann Med 45, 467473.
10. Hagen, ML (2016) Poteter og livsstilssykdommer. En systematisk oversiktsartikkel (Potatoes and diseases of affluence. A systematic review). NTFE 2, 6–12.
11. Camire, ME, Kubow, S & Donnelly, DJ (2009) Potatoes and human health. Crit Rev Food Sci Nutr 49, 823840.
12. Polesel, J, Talamini, R, Negri, E, et al. (2010) Dietary habits and risk of pancreatic cancer: an Italian case–control study. Cancer Causes Control 21, 493500.
13. Steinmetz, KA & Potter, JD (1993) Food-group consumption and colon cancer in the Adelaide Case-Control Study. I. Vegetables and fruit. Int J Cancer 53, 711719.
14. Åsli, LA, Olsen, A, Braaten, T, et al. (2017) Potato consumption and risk of colorectal cancer in the Norwegian women and cancer cohort. Nutr Cancer 69, 564572.
15. De Stefani, E, Correa, P, Boffetta, P, et al. (2004) Dietary patterns and risk of gastric cancer: a case-control study in Uruguay. Gastric Cancer 7, 211220.
16. Williams, CD, Satia, JA, Adair, LS, et al. (2009) Dietary patterns, food groups, and rectal cancer risk in Whites and African Americans. Cancer Epidemiol Biomarkers Prev 18, 15521561.
17. Bravi, F, Bosetti, C, Filomeno, M, et al. (2013) Foods, nutrients and the risk of oral and pharyngeal cancer. Br J Cancer 109, 29042910.
18. Deneo-Pellegrini, H, Boffetta, P, De Stefani, E, et al. (2002) Plant foods and differences between colon and rectal cancers. Eur J Cancer Prev 11, 369375.
19. Hansen, L, Skeie, G, Landberg, R, et al. (2012) Intake of dietary fiber, especially from cereal foods, is associated with lower incidence of colon cancer in the HELGA cohort. Int J Cancer 131, 469478.
20. Balbi, JC, Larrinaga, MT, De Stefani, E, et al. (2001) Foods and risk of bladder cancer: a case-control study in Uruguay. Eur J Cancer Prev 10, 453458.
21. Isa, F, Xie, L-P, Hu, Z, et al. (2013) Dietary consumption and diet diversity and risk of developing bladder cancer: results from the South and East China case–control study. Cancer Causes Control 24, 885895.
22. Ludwig, DS (2002) The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA 287, 24142423.
23. van Bakel, MME, Kaaks, R, Feskens, EJM, et al. (2009) Dietary glycaemic index and glycaemic load in the European Prospective Investigation into Cancer and Nutrition. Eur J Clin Nutr 63, S188S205.
24. Wirfält, E, McTaggart, A, Pala, V, et al. (2007) Food sources of carbohydrates in a European cohort of adults. Public Health Nutr 5, 11971215.
25. Aune, D, Chan, DSM, Vieira, AR, et al. (2012) Dietary fructose, carbohydrates, glycemic indices and pancreatic cancer risk: a systematic review and meta-analysis of cohort studies. Ann Oncol 23, 25362546.
26. Choi, Y, Giovannucci, E & Lee, JE (2012) Glycaemic index and glycaemic load in relation to risk of diabetes-related cancers: a meta-analysis. Br J Nutr 108, 19341947.
27. Hu, J, La Vecchia, C, Augustin, LS, et al. (2013) Glycemic index, glycemic load and cancer risk. Ann Oncol 24, 245251.
28. Turati, F, Galeone, C, Gandini, S, et al. (2015) High glycemic index and glycemic load are associated with moderately increased cancer risk. Mol Nutr Food Res 59, 13841394.
29. Bosetti, C, Bravi, F, Turati, F, et al. (2013) Nutrient-based dietary patterns and pancreatic cancer risk. Ann Epidemiol 23, 124128.
30. Chan, JM, Gong, Z, Holly, EA, et al. (2013) Dietary patterns and risk of pancreatic cancer in a large population-based case-control study in the San Francisco Bay Area. Nutr Cancer 65, 157164.
31. Michaud, DS, Skinner, HG, Wu, K, et al. (2005) Dietary patterns and pancreatic cancer risk in men and women. J Natl Cancer Inst 97, 518524.
32. Statistiska Centralbyrån (Statistics Sweden) (2002) Potatis – konsumtion och fritidsodling (Potatoes – consumption and cultivation). http://www.scb.se/statistik/JO/JO0603/2003M00/JOFT0201.pdf (accessed March 2016).
33. Nasjonalt råd for ernæring (National Nutrition Council) (2011) Kostråd for å fremme folkehelsen og forebygge kroniske sykdommer. Metodologi og vitenskapelig kunnskapsgrunnlag (Dietary guidelines to promote public health and prevent chronic diseases. Research methods and knowledge base). https://helsedirektoratet.no/Lists/Publikasjoner/Attachments/400/Kostrad-for-a-fremme-folkehelsen-og-forebygge-kroniske-sykdommer-metodologi-og-vitenskapelig-kunnskapsgrunnlag-IS-1881.pdf (accessed March 2016).
34. Danmarks Fødevare- og Veterinærforskning (Danish Institute for Food and Veterinary Research) (2004) Afdeling for Ernæring. Udviklingen i danskernes kost 1985–2001. Med fokus på sukker og alkohol samt motivation (Danish dietary habits 1985-2001. Focusing on sugar and alcohol as well as motivation and barriers for a healthy lifestyle). http://docplayer.dk/17487389-Udviklingen-i-danskernes-kost-1985-2001.html (accessed March 2016).
35. Lund, E, Dumeaux, V, Braaten, T, et al. (2008) Cohort profile: the Norwegian Women and Cancer Study – NOWAC – Kvinner og kreft. Int J Epidemiol 37, 3641.
36. Winkvist, A, Hörnell, A, Hallmans, G, et al. (2009) More distinct food intake patterns among women than men in northern Sweden: a population-based survey. Nutr J 8, 12.
37. Tjønneland, A, Olsen, A, Boll, K, et al. (2007) Study design, exposure variables, and socioeconomic determinants of participation in Diet, Cancer and Health: a population-based prospective cohort study of 57,053 men and women in Denmark. Scand J Public Health 35, 432441.
38. Riboli, E, Hunt, KJ, Slimani, N, et al. (2007) European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr 5, 11131124.
39. Hjartåker, A, Andersen, LF & Lund, E (2007) Comparison of diet measures from a food-frequency questionnaire with measures from repeated 24-hour dietary recalls. The Norwegian Women and Cancer Study. Public Health Nutr 10, 10941103.
40. Johansson, I, Hallmans, G, Wikman, Å, et al. (2007) Validation and calibration of food-frequency questionnaire measurements in the Northern Sweden Health and Disease cohort. Public Health Nutr 5, 487496.
41. Tjønneland, A, Overvad, K, Haraldsdóttir, J, et al. (1991) Validation of a semiquantitative food frequency questionnaire developed in Denmark. Int J Epidemiol 20, 906912.
42. Åsli, LA, Braaten, T, Olsen, A, et al. (2015) What characterises women who eat potatoes? A cross-sectional study among 74,208 women in the Norwegian Women and Cancer cohort. Food Nutr Res 59, 25703.
43. National Heart, Lung and Blood Institute (2016) What is metabolic syndrome?. National Institute of Health. http://www.nhlbi.nih.gov/health/health-topics/topics/ms (accessed March 2016).
44. Lake, A & Townshend, T (2006) Obesogenic environments: exploring the built and food environments. J R Soc Promot Health 126, 262267.
45. Harrell, FE Jr (2001) Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. New York: Springer.
46. Greenland, S (1995) Dose-response and trend analysis in epidemiology: alternatives to categorical analysis. Epidemiology 6, 356365.
47. Kuk, JL & Ardern, CI (2010) Age and sex differences in the clustering of metabolic syndrome factors: association with mortality risk. Diabetes Care 33, 24572461.
48. Esposito, K, Chiodini, P, Colao, A, et al. (2012) Metabolic syndrome and risk of cancer: a systematic review and meta-analysis. Diabetes Care 35, 24022411.
49. Rosato, V, Tavani, A, Bosetti, C, et al. (2011) Metabolic syndrome and pancreatic cancer risk: a case-control study in Italy and meta-analysis. Metabolism 60, 13721378.

Keywords

Potato consumption and risk of pancreatic cancer in the HELGA cohort

  • Lene A. Åsli (a1), Tonje Braaten (a1), Anja Olsen (a2), Anne Tjønneland (a2), Kim Overvad (a3), Lena Maria Nilsson (a4) (a5), Frida Renström (a6) (a7), Eiliv Lund (a1) and Guri Skeie (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed