Skip to main content Accessibility help
×
Home

Oxylipin concentration, but not fatty acid composition, is altered in human donor milk pasteurised using both thermal and non-thermal techniques

  • Michael A. Pitino (a1) (a2), Shoug M. Alashmali (a1) (a3), Kathryn E. Hopperton (a2), Sharon Unger (a4) (a5), Yves Pouliot (a6), Alain Doyen (a6), Deborah L. O’Connor (a1) (a2) and Richard P. Bazinet (a1)...

Abstract

Human donor milk (DM) is Holder pasteurised (62·5°C, 30 min) to ensure its microbiological safety for infant consumption. In low-resource settings, flash heating is used to pasteurise milk. Although there is considerable interest in non-thermal alternatives (high hydrostatic pressure processing (HHP) and UVC irradiation) for pasteurisation, their effect on the fatty acid composition is not well understood. Of particular interest is the effect of pasteurisation on the generation of oxylipins. DM from eight mothers containing bacteria >5 × 107 colony-forming units/l was used. In a paired design, each pool of milk underwent four pasteurisation techniques: Holder; flash heating; UVC (250 nm, 25 min) and HHP (500 MPa, 8 min). Fatty acids were quantified by GC-flame ionisation detection and oxylipins derived from arachidonic acid; 18-carbon PUFA (α-linolenic acid, linoleic acid and γ-linolenic acid) and EPA/DHA were measured by liquid chromatography-tandem MS in aliquots of raw and processed milk. There were no significant changes to the composition of fatty acids following all pasteurisation techniques compared with raw milk. The n-6:n-3 ratio remained constant ranging from 6·4 to 6·6. Several arachidonic acid-derived oxylipins were highest post-UVC and elevated post-HHP compared with raw milk. Several oxylipins derived from 18-carbon PUFA (linoleic and α-linolenic acids) were elevated in UVC-treated milk. EPA/DHA-derived oxylipins were on average, unaffected by pasteurisation. Although some PUFA-derived oxylipins were increased following UVC and HHP, no method affected the fatty acid composition of human DM. Further research is needed to determine if varying levels of oxylipins in human DM as a result of processing can potentially mediate cellular signalling; proliferation and apoptosis, especially important for preterm infant development.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Oxylipin concentration, but not fatty acid composition, is altered in human donor milk pasteurised using both thermal and non-thermal techniques
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Oxylipin concentration, but not fatty acid composition, is altered in human donor milk pasteurised using both thermal and non-thermal techniques
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Oxylipin concentration, but not fatty acid composition, is altered in human donor milk pasteurised using both thermal and non-thermal techniques
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr R. P. Bazinet, email richard.bazinet@utoronto.ca

References

Hide All
1.Victora, CG, Bahl, R, Barros, AJD, et al. (2016) Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet 387, 475490.
2.Koletzko, B, Rodriguez-Palmero, M, Demmelmair, H, et al. (2001) Physiological aspects of human milk lipids. Early Hum Dev 65, S3S18.
3.Schweiger, M, Eichmann, TO, Taschler, U, et al. (2014) Measurement of lipolysis. Methods Enzymol 538, 171193.
4.Krohn, K, Demmelmair, H & Koletzko, B (2016) Macronutrient requirements for growth: fats and fatty acids. In Nutrition [Duggan, C, Watkins, J, Koletzkc, B and Walker, WA, editors]. Raleigh, NC: People’s Medical Publishing House.
5.Yang, J, Schmelzer, K, Georgi, K, et al. (2009) Quantitative profiling method for oxylipin metabolome by liquid chromatography electrospray ionization tandem mass spectrometry. Anal Chem 81, 80858093.
6.Alexandre-Gouabau, M-C, Moyon, T, Cariou, V, et al. (2018) Breast milk lipidome is associated with early growth trajectory in preterm infants. Nutrients 10, 164.
7.The Human Milk Banking Association of North America (2018) Guidelines for the Establishment and Operation of a Donor Human Milk Bank. Fort Worth, TX: Human Milk Banking Association of North America.
8.Eats on Feets (2018) Resource for Informed Breastmilk Sharing. http://www.eatsonfeets.org/ (accessed June 2018).
9.O’Connor, DL, Ewaschuk, JB & Unger, S (2015) Human milk pasteurization. Curr Opin Clin Nutr Metab Care 18, 269275.
10.Peila, C, Emmerik, NE, Giribaldi, M, et al. (2017) Human milk processing: a systematic review of innovative techniques to ensure the safety and quality of donor milk. J Peditr Gastroenterol Nutr 64, 353361.
11.Pitino, MA, Unger, S, Doyen, A, et al. (2019) High hydrostatic pressure processing better preserves the nutrient and bioactive compound composition of human donor milk. J Nutr 149, 497504.
12.Delgado, FJ, Cava, R, Delgado, J, et al. (2014) Tocopherols, fatty acids and cytokines content of Holder pasteurised and high-pressure processed human milk. Dairy Sci Technol 94, 145156.
13.Moltó-Puigmartí, C, Permanyer, M, Castellote, AI, et al. (2011) Effects of pasteurisation and high-pressure processing on vitamin C, tocopherols and fatty acids in mature human milk. Food Chem 124, 697702.
14.Arnardottir, H, Orr, SK, Dalli, J, et al. (2016) Human milk proresolving mediators stimulate resolution of acute inflammation. Mucosal Immunol 9, 757766.
15.Israel-Ballard, KA, Abrams, BF, Coutsoudis, A, et al. (2008) Vitamin content of breast milk from HIV-1-infected mothers before and after flash-heat treatment. J Acquir Immune Defic Syndr 48, 444449.
16.Christen, L, Lai, CT, Hartmann, B, et al. (2013) Ultraviolet-C irradiation: a novel pasteurization method for donor human milk. PLOS ONE 8, e68120.
17.Folch, J, Lees, M & Sloane Stanley, GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226, 497509.
18.Chen, CT, Liu, Z & Bazinet, RP (2011) Rapid de-esterification and loss of eicosapentaenoic acid from rat brain phospholipids: an intracerebroventricular study. J Neurochem 116, 363373.
19.Lin, LE, Chen, CT, Hildebrand, KD, et al. (2015) Chronic dietary n-6 PUFA deprivation leads to conservation of arachidonic acid and more rapid loss of DHA in rat brain phospholipids. J Lipid Res 56, 390402.
20.Colas, RA, Shinohara, M, Dalli, J, et al. (2014) Identification and signature profiles for pro-resolving and inflammatory lipid mediators in human tissue. Am J Physiol Cell Physiol 307, C39C54.
21.Henderson, TR, Fay, TN & Hamosh, M (1998) Effect of pasteurization on long chain polyunsaturated fatty acid levels and enzyme activities of human milk. J Pediatr 132, 876878.
22.Alashmali, SM, Kitson, AP, Lin, L, et al. (2019) Maternal dietary n-6 polyunsaturated fatty acid deprivation does not exacerbate post-weaning reductions in arachidonic acid and its mediators in the mouse hippocampus. Nutr Neurosci 22, 223234.
23.Galvan, P, Maggini, R, Lepri, L, et al. (2002) Effect of pasteurization and storage on some components of pooled human milk. J Chromatogr B Biomed Sci Appl 704, 110.
24.Yuhas, R, Pramuk, K & Lien, EL (2006) Human milk fatty acid composition from nine countries varies most in DHA. Lipids 41, 851858.
25.Mozhaev, VV, Lange, R, Kudryashova, EV, et al. (1996) Application of high hydrostatic pressure for increasing activity and stability of enzymes. Biotechnol Bioeng 52, 320331.
26.Capdevila, JH, Falck, JR & Harris, RC (2000) Cytochrome P450 and arachidonic acid bioactivation. Molecular and functional properties of the arachidonate monooxygenase. J Lipid Res 41, 163181.
27.Galliard, T & Phillips, DR (1971) Lipoxygenase from potato tubers. Partial purification and properties of an enzyme that specifically oxygenates the 9-position of linoleic acid. Biochem J 124, 431438.
28.Kumar, N, Gupta, G, Anilkumar, K, et al. (2016) 15-Lipoxygenase metabolites of α-linolenic acid, [13-(S)-HPOTrE and 13-(S)-HOTrE], mediate anti-inflammatory effects by inactivating NLRP3 inflammasome. Sci Rep 6, 31649.
29.Wu, J, Gouveia-Figueira, S, Domellöf, M, et al. (2016) Oxylipins, endocannabinoids, and related compounds in human milk: levels and effects of storage conditions. Prostaglandins Other Lipid Mediat 122, 2836.
30.Robinson, DT, Palac, HL, Baillif, V, et al. (2017) Long chain fatty acids and related pro-inflammatory, specialized pro-resolving lipid mediators and their intermediates in preterm human milk during the first month of lactation. Prostaglandins Leukot Essent Fatty Acids 121, 16.

Keywords

Related content

Powered by UNSILO
Type Description Title
WORD
Supplementary materials

Pitino et al. supplementary material
Pitino et al. supplementary material 1

 Word (15 KB)
15 KB

Oxylipin concentration, but not fatty acid composition, is altered in human donor milk pasteurised using both thermal and non-thermal techniques

  • Michael A. Pitino (a1) (a2), Shoug M. Alashmali (a1) (a3), Kathryn E. Hopperton (a2), Sharon Unger (a4) (a5), Yves Pouliot (a6), Alain Doyen (a6), Deborah L. O’Connor (a1) (a2) and Richard P. Bazinet (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.