1DeFronzo, RA, Bonadonna, RC & Ferrannini, E (1992) Pathogenesis of NIDDM. A balanced overview. Diabetes Care 15, 318–368.
2Gadsby, R (2000) Type 2 diabetes: prediction and prevention. Fam Pract 17, 213–214.
3Haffner, SM, Greenberg, AS, Weston, WM, et al. (2002) Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation 106, 679–684.
4Manson, JE, Colditz, GA, Stampfer, MJ, et al. (1991) A prospective study of maturity-onset diabetes mellitus and risk of coronary heart disease and stroke in women. Arch Intern Med 151, 1141–1147.
5Storey, AM, Perry, CJ & Petrie, JR (2001) Review: endothelial dysfunction in type 2 diabetes. Br J Diabetes Vasc Dis 1, 22–27.
6Oduru, M & Ahmad, M (2012) Massive levemir (long-acting) insulin overdose: case report. Case Report Med 2012, 904841.
7Kaur, IP, Chopra, K & Saini, A (2002) Probiotics: potential pharmaceutical applications. Eur J Pharm Sci 15, 1–9.
8de Moreno de LeBlanc, A, Matar, C, Perdigon, G, et al. (2007) The application of probiotics in cancer. Br J Nutr 98, Suppl. 1, S105–S110.
9Laitinen, K, Poussa, T, Isolauri, E, et al. (2009) Probiotics and dietary counselling contribute to glucose regulation during and after pregnancy: a randomised controlled trial. Br J Nutr 101, 1679–1687.
10Matsuzaki, T, Yamazaki, R, Hashimoto, S, et al. (1997) Antidiabetic effects of an oral administration of Lactobacillus casei in a non-insulin-dependent diabetes mellitus (NIDDM) model using KK-Ay mice. Endocr J 44, 357–365.
11Matsuzaki, T, Nagata, Y, Kado, S, et al. (1997) Effect of oral administration of Lactobacillus casei on alloxan-induced diabetes in mice. APMIS 105, 637–642.
12Panwar, H, Rashmi, HM, Batish, VK, et al. (2013) Probiotics as potential biotherapeutics in the management of type 2 diabetes – prospects and perspectives. Diabetes Metab Res Rev 29, 103–112.
13Kim, SW, Park, KY, Kim, B, et al. (2013) Lactobacillus rhamnosus GG improves insulin sensitivity and reduces adiposity in high-fat diet-fed mice through enhancement of adiponectin production. Biochem Biophys Res Commun 431, 258–263.
14Akula, A, Kota, MK, Gopisetty, SG, et al. (2003) Biochemical, histological and echocardiographic changes during experimental cardiomyopathy in STZ-induced diabetic rats. Pharmacol Res 48, 429–435.
15Lu, YC, Yin, LT, Chang, WT, et al. (2010) Effect of Lactobacillus reuteri GMNL-263 treatment on renal fibrosis in diabetic rats. J Biosci Bioeng 110, 709–715.
16Yadav, H, Jain, S & Sinha, PR (2007) Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition 23, 62–68.
17Al-Salami, H, Butt, G, Tucker, I, et al. (2008) Probiotic pre-treatment reduces gliclazide permeation (ex vivo) in healthy rats but increases it in diabetic rats to the level seen in untreated healthy rats. Arch Drug Inf 1, 35–41.
18Andersson, U, Branning, C, Ahrne, S, et al. (2010) Probiotics lower plasma glucose in the high-fat fed C57BL/6J mouse. Benef Microbes 1, 189–196.
19Huang, CY, Yang, AL, Lin, YM, et al. (2012) Anti-apoptotic and pro-survival effects of exercise training on hypertensive hearts. J Appl Physiol 112, 883–891.
20Lee, SD, Shyu, WC, Cheng, IS, et al. (2013) Effects of exercise training on cardiac apoptosis in obese rats. Nutr Metab Cardiovasc Dis 23, 566–573.
21Lee, SD, Kuo, WW, Ho, YJ, et al. (2008) Cardiac Fas-dependent and mitochondria-dependent apoptosis in ovariectomized rats. Maturitas 61, 268–277.
22U.S. National Institutes of Health (1984) Laboratory animal welfare; proposed U.S. government principles for the utilization and care of vertebrate animals used in testing, research and training. Fed Regist 49, 29350–29351.
23de Vrese, M & Schrezenmeir, J (2008) Probiotics, prebiotics, and synbiotics. Food Biotechnol 111, 1–66.
24Oxman, T, Shapira, M, Klein, R, et al. (2001) Oral administration of Lactobacillus induces cardioprotection. J Altern Complement Med 7, 345–354.
25Shiomi, T, Tsutsui, H, Ikeuchi, M, et al. (2003) Streptozotocin-induced hyperglycemia exacerbates left ventricular remodeling and failure after experimental myocardial infarction. J Am Coll Cardiol 42, 165–172.
26De Angelis, K, Schaan, BD, Maeda, CY, et al. (2002) Cardiovascular control in experimental diabetes. Braz J Med Biol Res 35, 1091–1100.
27Cheng, SM, Ho, TJ, Yang, AL, et al. (2013) Exercise training enhances cardiac IGFI-R/PI3K/Akt and Bcl-2 family associated pro-survival pathways in streptozotocin-induced diabetic rats. Int J Cardiol 167, 478–485.
28Franz, MJ (2007) The dilemma of weight loss in diabetes. Diabetes Spectr 20, 133–136.
29Gudmundsson, P, Rydberg, E, Winter, R, et al. (2005) Visually estimated left ventricular ejection fraction by echocardiography is closely correlated with formal quantitative methods. Int J Cardiol 101, 209–212.
30He, KL, Burkhoff, D, Leng, WX, et al. (2009) Comparison of ventricular structure and function in Chinese patients with heart failure and ejection fractions >55 % versus 40 % to 55 % versus < 40 %. Am J Cardiol 103, 845–851.
31Regitz-Zagrosek, V, Brokat, S & Tschope, C (2007) Role of gender in heart failure with normal left ventricular ejection fraction. Prog Cardiovasc Dis 49, 241–251.
32Soetikno, V, Sari, FR, Sukumaran, V, et al. (2012) Curcumin prevents diabetic cardiomyopathy in streptozotocin-induced diabetic rats: possible involvement of PKC–MAPK signaling pathway. Eur J Pharm Sci 47, 604–614.
33Kawamori, R, Kadowaki, T & Ishida, H (2004) [Achieving better control of blood sugar – understanding of oral hypoglycemic agents according to their characteristics in pharmacological action mechanism (discussion)]. Nihon Rinsho 62, 831–839.
34Poirier, P, Bogaty, P, Philippon, F, et al. (2003) Preclinical diabetic cardiomyopathy: relation of left ventricular diastolic dysfunction to cardiac autonomic neuropathy in men with uncomplicated well-controlled type 2 diabetes. Metabolism 52, 1056–1061.
35Kuo, WW, Chung, LC, Liu, CT, et al. (2009) Effects of insulin replacement on cardiac apoptotic and survival pathways in streptozotocin-induced diabetic rats. Cell Biochem Funct 27, 479–487.
36Chbinou, N & Frenette, J (2004) Insulin-dependent diabetes impairs the inflammatory response and delays angiogenesis following Achilles tendon injury. Am J Physiol Regul Integr Comp Physiol 286, R952–R957.
37Lopes-Virella, MF & Virella, G (2003) The role of immune and inflammatory processes in the development of macrovascular disease in diabetes. Front Biosci 8, s750–s768.