Skip to main content Accessibility help
×
Home

Modulation of the insulin anabolic signalling cascade in growing chickens by n-3 PUFA

  • Sophie Tesseraud (a1), Pascal Chartrin (a1), Sonia Métayer-Coustard (a1), Dominique Hermier (a2) (a3), Noémie Simon (a4), Corinne Peyronnet (a4), Michel Lessire (a1) and Elisabeth Baéza (a1)...

Abstract

n-3 PUFA are crucial for health and development. Their effects as regulators of lipid and glucose metabolism are well documented. They also appear to affect protein metabolism, especially by acting on insulin sensitivity. The aim of the present study was to investigate the role of n-3 PUFA, i.e. the precursor α-linolenic acid (ALA) 18 : 3n-3 or long-chain PUFA (LC-PUFA), in chickens, by focusing on their potential function as co-regulators of the insulin anabolic signalling cascade. Ross male broilers were divided into six dietary treatment groups. Diets were isoproteic (22 % crude protein) and isoenergetic (12·54 MJ metabolisable energy/kg) and contained similar lipid levels (6 %) provided by different proportions of various lipid sources: oleic sunflower oil rich in 18 : 1n-9 as control; fish oil rich in LC-PUFA; rapeseed and linseed oils providing ALA. The provision of diets enriched with n-3 PUFA, i.e. rich in LC-PUFA or in the precursor ALA, for 3 weeks improved the growth performance of chickens, whereas that of only the ALA diet enhanced the development of the pectoralis major muscle. At 23 d of age, we studied the insulin sensitivity of the pectoralis major muscle and liver of chickens after an intravenous injection of insulin or saline. The present results indicate that the activation patterns of n-3 PUFA are different in the liver and muscles. An ALA-enriched diet may improve insulin sensitivity in muscles, with greater activation of the insulin-induced 70 kDa ribosomal protein S6 kinase/ribosomal protein S6 pathway involved in the translation of mRNA into proteins, thereby potentially increasing muscle protein synthesis and growth. Our findings provide a basis on which to optimise dietary fatty acid provision in growing animals.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Modulation of the insulin anabolic signalling cascade in growing chickens by n-3 PUFA
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Modulation of the insulin anabolic signalling cascade in growing chickens by n-3 PUFA
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Modulation of the insulin anabolic signalling cascade in growing chickens by n-3 PUFA
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Dr S. Tesseraud, fax +33 247 42 77 78, email sophie.tesseraud@tours.inra.fr

References

Hide All
1 Mandard, S, Muller, M & Kersten, S (2004) Peroxisome proliferator-activated receptor alpha target genes. Cell Mol Life Sci 61, 393416.
2 Bergeron, K, Julien, P, Davis, TA, et al. (2007) Long-chain n-3 fatty acids enhance neonatal insulin-regulated protein metabolism in piglets by differentially altering muscle lipid composition. J Lipid Res 48, 23962410.
3 Gingras, AA, White, PJ, Chouinard, PY, et al. (2007) Long-chain omega-3 fatty acids regulate bovine whole-body protein metabolism by promoting muscle insulin signalling to the Akt-mTOR-S6K1 pathway and insulin sensitivity. J Physiol 579, 269284.
4 Smith, GI, Atherton, P, Reeds, DN, et al. (2011) Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia–hyperaminoacidaemia in healthy young and middle-aged men and women. Clin Sci 121, 267278.
5 Smith, GI, Atherton, P, Reeds, DN, et al. (2011) Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial. Am J Clin Nutr 93, 402412.
6 Tesseraud, S, Métayer, S, Duchêne, S, et al. (2007) Regulation of protein metabolism by insulin: value of different approaches and animal models. Domest Anim Endocrinol 33, 123142.
7 Bigot, K, Taouis, M & Tesseraud, S (2003) Refeeding and insulin regulate S6K1 activity in chicken skeletal muscles. J Nutr 133, 369373.
8 Duchene, S, Audouin, E, Crochet, S, et al. (2008) Involvement of the ERK 1/2 MAPK pathway in insulin-induced S6K1 activation in avian cells. Domest Anim Endocrinol 34, 6373.
9 Duchene, S, Métayer, S, Audouin, E, et al. (2008) Refeeding and insulin activate the AKT/p70S6 kinase pathway without affecting IRSI tyrosine phosphorylation in chicken muscle. Domest Anim Endocrinol 34, 113.
10 Tesseraud, S, Abbas, M, Duchene, S, et al. (2006) Mechanisms involved in the nutritional regulation of mRNA translation: features of the avian model. Nutr Res Rev 19, 104116.
11 Bodine, SC, Latres, E, Baumhueter, S, et al. (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294, 17041708.
12 Gomes, MD, Lecker, SH, Jagoe, RT, et al. (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad U S A 98, 1444014445.
13 Clarke, BA, Drujan, D, Willis, MS, et al. (2007) The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab 6, 376385.
14 Cohen, S, Brault, JJ, Gygi, SP, et al. (2009) During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J Cell Biol 185, 10831095.
15 Attaix, D & Baracos, VE (2010) MAFbx/Atrogin-1 expression is a poor index of muscle proteolysis. Curr Opin Clin Nutr Metab Care 13, 223224.
16 Stitt, TN, Drujan, D, Clarke, BA, et al. (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14, 395403.
17 Nader, GA (2005) Molecular determinants of skeletal muscle mass: getting the “AKT” together. Int J Biochem Cell Biol 37, 19851996.
18 Tesseraud, S, Métayer-Coustard, S, Boussaid, S, et al. (2007) Insulin and amino acid availability regulate atrogin-1 in avian QT6 cells. Biochem Biophys Res Commun 357, 181186.
19 Marche, G (2000) La découpe anatomique et la dissection des volailles (Anatomic Carcass Processing and Dissection in Poultry) [SYSAAF and INRA, editors]. Nouzilly: SYSAAF and INRA.
20 Dupont, J, Tesseraud, S, Derouet, M, et al. (2008) Insulin immuno-neutralization in chicken: effects on insulin signaling and gene expression in liver and muscle. J Endocrinol 197, 531542.
21 Fossati, P & Prencipe, L (1982) Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin Chem 28, 20772080.
22 Artiss, JD & Entwistle, WM (1981) The application of a sensitive uricase-peroxidase coupled reaction to a centrifugal fast analyser for the determination of uric acid. Clin Chim Acta 116, 301309.
23 Trinder, P (1969) Determination of blood glucose using 4-amino phenazone as oxygen acceptor. J Clin Pathol 22, 246.
24 Monin, G & Sellier, P (1985) Pork of low technological quality with a normal rate of pH fall in the intermediate post mortem period: the case of the Hampshire breed. Meat Sci 13, 4963.
25 Dalrymple, RH & Hamm, R (1973) A method for extraction of glycogen and metabolites from a single muscle sample. J Food Technol 8, 439444.
26 Folch, J, Lees, M & Sloane Stanley, GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226, 497509.
27 Morrisson, WR & Smith, ML (1964) Preparation of fatty acid methyl esters and dimethylacetates from lipid with boron trifluoride methanol. J Lipid Res 5, 600608.
28 Tesseraud, S, Bouvarel, I, Collin, A, et al. (2009) Daily variations in dietary lysine content alter the expression of genes related to proteolysis in chicken pectoralis major muscle. J Nutr 139, 3843.
29 Joubert, R, Métayer Coustard, S, Swennen, Q, et al. (2010) The beta-adrenergic system is involved in the regulation of the expression of avian uncoupling protein in the chicken. Domest Anim Endocrinol 38, 115125.
30 Hérault, F, Saez, G, Robert, E, et al. (2010) Liver gene expression in relation to hepatic steatosis and lipid secretion in two duck species. Anim Genet 41, 1220.
31 Chabrolle, C, Tosca, L, Crochet, S, et al. (2007) Expression of adiponectin and its receptors (AdipoR1 and AdipoR2) in chicken ovary: potential role in ovarian steroidogenesis. Domest Anim Endocrinol 33, 480487.
32 Duchene, S, Audouin, E, Berri, C, et al. (2008) Tissue-specific regulation of S6K1 by insulin in chickens divergently selected for growth. Gen Comp Endocrinol 156, 190198.
33 Leveille, GA, Romsos, DR, Yeh, Y, et al. (1975) Lipid biosynthesis in the chick. A consideration of site of synthesis, influence of diet and possible regulatory mechanisms. Poult Sci 54, 10751093.
34 Cahaner, A, Nitsan, Z & Nir, I (1986) Weight and fat content of adipose and non-adipose tissues in broilers selected for or against abdominal adipose tissue. Poult Sci 65, 215222.
35 Baillie, AG & Garlick, PJ (1991) Responses of protein synthesis in different skeletal muscles to fasting and insulin in rats. Am J Physiol Endocrinol Metab 260, E891E896.
36 Tesseraud, S, Maaa, N, Peresson, R, et al. (1996) Relative responses of protein turnover in three different skeletal muscles to dietary lysine deficiency in chicks. Br Poult Sci 37, 641650.
37 Kouba, M & Mourot, J (2011) A review of nutritional effects on fat composition of animal products with special emphasis on n-3 polyunsaturated fatty acids. Biochimie 93, 1317.
38 Kartikasari, LR, Hughes, RJ, Geier, MS, et al. (2012) Dietary alpha-linolenic acid enhances omega-3 long chain polyunsaturated fatty acid levels in chicken tissues. Prostaglandins Leukot Essent Fatty Acids 87, 103109.
39 Lessire, M (2001) Matières grasses alimentaires et composition lipidique des volailles (Dietary fats and poultry fatty acid composition). INRA Prod Anim 14, 365370.
40 Khal, J & Tisdale, MJ (2008) Downregulation of muscle protein degradation in sepsis by eicosapentaenoic acid (EPA). Biochem Biophys Res Commun 375, 238240.
41 Smith, HJ, Greenberg, NA & Tisdale, MJ (2004) Effect of eicosapentaenoic acid, protein and amino acids on protein synthesis and degradation in skeletal muscle of cachectic mice. Br J Cancer 91, 408412.
42 Whitehouse, AS, Smith, HJ, Drake, JL, et al. (2001) Mechanism of attenuation of skeletal muscle protein catabolism in cancer cachexia by eicosapentaenoic acid. Cancer Res 61, 36043609.
43 You, JS, Park, MN, Song, W, et al. (2010) Dietary fish oil alleviates soleus atrophy during immobilization in association with Akt signaling to p70s6k and E3 ubiquitin ligases in rats. Appl Physiol Nutr Metab 35, 310318.
44 Sohal, PS, Baracos, VE & Clandinin, MT (1992) Dietary omega 3 fatty acid alters prostaglandin synthesis, glucose transport and protein turnover in skeletal muscle of healthy and diabetic rats. Biochem J 286, 405411.
45 Frost, RA, Nystrom, GJ, Jefferson, LS, et al. (2007) Hormone, cytokine, and nutritional regulation of sepsis-induced increases in atrogin-1 and MuRF1 in skeletal muscle. Am J Physiol Endocrinol Metab 292, E501E512.
46 Taouis, M, Dagou, C, Ster, C, et al. (2002) N-3 polyunsaturated fatty acids prevent the defect of insulin receptor signaling in muscle. Am J Physiol Endocrinol Metab 282, E664E671.
47 Liu, S, Baracos, VE, Quinney, HA, et al. (1994) Dietary omega-3 and polyunsaturated fatty acids modify fatty acyl composition and insulin binding in skeletal-muscle sarcolemma. Biochem J 299, 831837.
48 Anderson, BM & Ma, DW (2009) Are all n-3 polyunsaturated fatty acids created equal? Lipids Health Dis 8, 33.
49 Le Foll, C, Corporeau, C, Le Guen, V, et al. (2007) Long-chain n-3 polyunsaturated fatty acids dissociate phosphorylation of Akt from phosphatidylinositol 3'-kinase activity in rats. Am J Physiol Endocrinol Metab 292, E1223E1230.
50 Sedding, DG, Hermsen, J, Seay, U, et al. (2005) Caveolin-1 facilitates mechanosensitive protein kinase B (Akt) signaling in vitro and in vivo . Circ Res 96, 635642.
51 Kamolrat, T & Gray, SR (2013) The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes. Biochem Biophys Res Commun 432, 593598.

Keywords

Type Description Title
PDF
Supplementary materials

Tesseraud Supplementary Material
Table and Image

 PDF (148 KB)
148 KB

Modulation of the insulin anabolic signalling cascade in growing chickens by n-3 PUFA

  • Sophie Tesseraud (a1), Pascal Chartrin (a1), Sonia Métayer-Coustard (a1), Dominique Hermier (a2) (a3), Noémie Simon (a4), Corinne Peyronnet (a4), Michel Lessire (a1) and Elisabeth Baéza (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed