Skip to main content Accessibility help
×
Home

Methionine restriction affects the phenotypic and transcriptional response of rainbow trout (Oncorhynchus mykiss) to carbohydrate-enriched diets

  • Paul M. Craig (a1) and Thomas W. Moon (a1)

Abstract

Mammalian studies report that methionine restriction (MR) as a dietary regimen extends life span, delays the onset of age-related diseases and enhances fat oxidation in obese subjects with metabolic syndromes. However, the underlying cellular signalling pathways are poorly understood. Rainbow trout (Oncorhynchus mykiss) is a glucose-intolerant species, providing an excellent model for the study of carbohydrate metabolism. MR diets in combination with 12 % (+/ − ) and 22 % (+/ − ) carbohydrate-rich meals were fed to rainbow trout for a period of 8 weeks and phenotypic and transcript expression changes in the liver and white muscle were assessed. Fish fed MR diets, irrespective of carbohydrate load, were shown to abolish the glucose-intolerant phenotype 6 h post-feeding. There was a distinct switch in glucose and glycogen content in the liver of fish fed MR diets, with a significantly higher concentration of glycogen, suggesting reduced glycolytic capacity. Transcriptional responses to MR demonstrated decreased expression of hepatic fatty acid synthase, sterol regulatory binding protein 1, PPARγ coactivator 1-α and PPARα, indicative of a reduction in the de novo synthesis of fatty acids and cholesterol, and a potential decrease in hepatic fat oxidative capacity. Muscle adenylate charge was depressed under MR, and increased expression of AMP-activated protein kinase α1 was detected, indicative of reduced energy availability. Total DNA methylation showed that carbohydrate load, rather than MR, dictated hypomethylation of genomic DNA. This is the first study which demonstrates that MR can abolish a glucose-intolerant phenotype in trout, and identifies trout as a suitable model for studying metabolic syndromes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Methionine restriction affects the phenotypic and transcriptional response of rainbow trout (Oncorhynchus mykiss) to carbohydrate-enriched diets
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Methionine restriction affects the phenotypic and transcriptional response of rainbow trout (Oncorhynchus mykiss) to carbohydrate-enriched diets
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Methionine restriction affects the phenotypic and transcriptional response of rainbow trout (Oncorhynchus mykiss) to carbohydrate-enriched diets
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr P. M. Craig, E-mail: pcraig@uottawa.ca

References

Hide All
1Naylor, RL, Goldburg, RJ, Primavera, JH, et al. (2000) Effect of aquaculture on world fish supplies. Nature 405, 10171024.
2New, MB & Wijkstroem, UN (2002) Use of Fishmeal and Fish Oil in Aquafeeds: Further Thoughts on the Fishmeal Trap. FAO Fisheries Circular no. 975. Rome: FAO.
3Moon, TW (2001) Glucose intolerance in teleost fish: fact or fiction? Comp Biochem Phys B 129, 243249.
4Hemre, GI, Mommsen, TP & Krogdahl, Å (2002) Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquac Nutr 8, 175194.
5Del sol Novoa, M, Capilla, E, Rojas, P, et al. (2004) Glucagon and insulin response to dietary carbohydrate in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 139, 4854.
6Sanz, A, Caro, P, Ayala, V, et al. (2006) Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins. FASEB J 20, 10641073.
7Caro, P, Gómez, J, López-Torres, M, et al. (2008) Forty percent and eighty percent methionine restriction decrease mitochondrial ROS generation and oxidative stress in rat liver. Biogerontology 9, 183196.
8Orentreich, N, Matias, JR, DeFelice, A, et al. (1993) Low methionine ingestion by rats extends life span. J Nutr 123, 269274.
9Plaisance, EP, Greenway, FL, Boudreau, A, et al. (2011) Dietary methionine restriction increases fat oxidation in obese adults with metabolic syndrome. J Clin Endocrinol Metab 96, E836E840.
10Shivapurkar, N & Poirier, L (1983) Tissue levels of S-adenosylmethionine and S-adenosylhomocysteine in rats fed methyl-deficient, amino acid-defined diets for one to five weeks. Carcinogenesis 4, 10511057.
11Pogribny, IP, Ross, SA, Wise, C, et al. (2006) Irreversible global DNA hypomethylation as a key step in hepatocarcinogenesis induced by dietary methyl deficiency. Mutat Res 593, 8087.
12National Research Council (1993) Nutrient Requirement of Fish [Board of Agriculture and NRC, editors]. Washington, DC: National Academies Press.
13Davies, SJ & Morris, PC (1997) Influence of multiple amino acid supplementation on the performance of rainbow trout, Oncorhynchus mykiss (Walbaum), fed soya based diets. Aquacult Res 28, 6574.
14Cheng, ZJ, Hardy, RW & Usry, JL (2003) Effects of lysine supplementation in plant protein-based diets on the performance of rainbow trout (Oncorhynchus mykiss) and apparent digestibility coefficients of nutrients. Aquaculture 215, 255265.
15Gaylord, TG & Barrows, FT (2009) Multiple amino acid supplementations to reduce dietary protein in plant-based rainbow trout, Oncorhynchus mykiss, feeds. Aquaculture 287, 180184.
16Espe, M, Rathore, R & Du, Z-Y (2010) Methionine limitation results in increased hepatic FAS activity, higher liver 18:1 to 18:0 fatty acid ratio and hepatic TAG accumulation in Atlantic salmon, Salmo salar. Amino Acids 39, 449460.
17Lansard, M, Panserat, S, Plagnes-Juan, E, et al. (2010) Integration of insulin and amino acid signals that regulate hepatic metabolism-related gene expression in rainbow trout: role of TOR. Amino Acids 39, 801810.
18Lansard, M, Panserat, S, Plagnes-Juan, E, et al. (2011) l-Leucine, l-methionine, and l-lysine are involved in the regulation of intermediary metabolism-related gene expression in rainbow trout hepatocytes. J Nutr 141, 7580.
19Polakof, S, Médale, F, Larroquet, L, et al. (2011) Insulin stimulates lipogenesis and attenuates beta-oxidation in white adipose tissue of fed rainbow trout. Lipids 46, 189199.
20Hasek, BE, Stewart, LK, Henagan, TM, et al. (2010) Dietary methionine restriction enhances metabolic flexibility and increases uncoupled respiration in both fed and fasted states. Am J Physiol Regul Integr Comp Physiol 299, R728R739.
21Panserat, S, Skiba-Cassy, S, Seiliez, I, et al. (2009) Metformin improves postprandial glucose homeostasis in rainbow trout fed dietary carbohydrates: a link with the induction of hepatic lipogenic capacities? Am J Physiol Regul Integr Comp Physiol 297, R707R715.
22Hassid, WZ & Abraham, S (1957) Chemical procedures for analysis of polysaccharides. In Methods Enzymology, pp. 3437 [Colowick, SP and Kaplan, NO, editors]. New York, NY: Academic Press.
23Bergmeyer, HU (1983) Methods of Enzymatic Analysis. New York, NY: Academic Press.
24Panserat, S, Medale, F, Blin, C, et al. (2000) Hepatic glucokinase is induced by dietary carbohydrates in rainbow trout, gilthead seabream, and common carp. Am J Physiol Regul Integr Comp Physiol 278, R1164R1170.
25Livak, KJ & Schmittgen, TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25, 402408.
26Rozen, S & Skaletsky, HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols: Methods in Molecular Biology, pp. 365386 [Krawetz, S and Misener, S, editors]. New Jersey: Humana.
27Skiba-Cassy, S, Lansard, M, Panserat, S, et al. (2009) Rainbow trout genetically selected for greater muscle fat content display increased activation of liver TOR signaling and lipogenic gene expression. Am J Physiol Regul Integr Comp Physiol 297, R1421R1429.
28Kondo, H, Suga, R, Suda, S, et al. (2011) EST analysis on adipose tissue of rainbow trout Oncorhynchus mykiss and tissue distribution of adiponectin. Gene 485, 4045.
29Furuichi, M & Yone, Y (1982) Availability of carbohydrate in nutrition of carp and red sea bream. Bull Jpn Soc Sci Fish 48, 945948.
30Wilson, RP & Poe, WE (1987) Apparent inability of channel catfish to utilize dietary mono- and disaccharides as energy sources. J Nutr 117, 280285.
31Panserat, S, Medale, F, Breque, J, et al. (2000) Lack of significant long-term effect of dietary carbohydrates on hepatic glucose-6-phosphatase expression in rainbow trout (Oncorhynchus mykiss). J Nutr Biochem 11, 2229.
32Panserat, S, Plagnes-Juan, E, Breque, J, et al. (2001) Hepatic phosphoenolpyruvate carboxykinase gene expression is not repressed by dietary carbohydrates in rainbow trout (Oncorhynchus mykiss). J Exp Biol 204, 359365.
33Panserat, S, Plagnes-Juan, E & Kaushik, S (2001) Nutritional regulation and tissue specificity of gene expression for proteins involved in hepatic glucose metabolism in rainbow trout (Oncorhynchus mykiss). J Exp Biol 204, 23512360.
34Brauge, C, Corraze, G & Médale, F (1995) Effects of dietary levels of carbohydrate and lipid on glucose oxidation and lipogenesis from glucose in rainbow trout, Oncorhynchus mykiss, reared in freshwater or in seawater. Comp Biochem Phys A 111, 117124.
35Gutierrez, J, Asgard, T, Fabbri, E, et al. (1991) Insulin-receptor binding in skeletal muscle of trout. Fish Physiol Biochem 9, 351360.
36Párrizas, M, Planas, J, Plisetskaya, EM, et al. (1994) Insulin binding and receptor tyrosine kinase activity in skeletal muscle of carnivorous and omnivorous fish. Am J Physiol Regul Integr Comp Physiol 266, R1944R1950.
37Bouraoui, L, Capilla, E, Gutierrez, J, et al. (2010) Insulin and insulin-like growth factor I signaling pathways in rainbow trout (Oncorhynchus mykiss) during adipogenesis and their implication in glucose uptake. Am J Physiol Regul Integr Comp Physiol 299, R33R41.
38Polakof, S, Skiba-Cassy, S, Choubert, G, et al. (2010) Insulin-induced hypoglycaemia is coordinately regulated by liver and muscle during acute and chronic insulin stimulation in rainbow trout (Oncorhynchus mykiss). J Exp Biol 213, 14431452.
39Fantuzzi, G (2005) Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 115, 911919.
40Guerre-Millo, M (2008) Adiponectin: an update. Diabetes Metab 34, 1218.
41Savino, F, Petrucci, E & Nanni, GE (2008) Adiponectin: an intriguing hormone for paediatricians. Acta Paediatr 97, 701705.
42Ukkola, O & Santaniemi, M (2002) Adiponectin: a link between excess adiposity and associated comorbidities? J Mol Med 80, 696702.
43Nedvidkova, J, Smitka, K, Kopsky, V, et al. (2005) Adiponectin, an adipocyte-derived protein. Physiol Res 54, 133134.
44Brown, MS & Goldstein, JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331340.
45Puigserver, P & Spiegelman, BM (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24, 7890.
46Kersten, S, Seydoux, J, Peters, JM, et al. (1999) Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest 103, 14891498.
47Murai, T, Yagisawa, I, Akiyama, T, et al. (1980) Protein, fat and carbohydrate sources of practical diet for fingerling chum salmon, Oncorhynchus keta. Bull Natl Res Inst Aquacult 1, 7986.
48Hilton, JW & Atkinson, JI (1982) Response of rainbow trout (Salmo gairdneri) to increased levels of available carbohydrate in practical trout diets. Br J Nutr 47, 597607.
49Hardie, DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8, 774785.
50Sandovici, I, Smith, NH, Ozanne, SE, et al. (2008) Dynamic epigenome: the impact of the environment on epigenetic regulation of gene expression and developmental programming. In Epigenetics, pp. 343370 [Tost, J, editor]. Norfolk: Caister Academic.
51Sandovici, I, Smith, NH, Nitert, MD, et al. (2011) Maternal diet and aging alter the epigenetic control of a promoter-enhancer interaction at the Hnf4a gene in rat pancreatic islets. Proc Natl Acad Sci U S A 108, 54495454.
52Holliday, R & Pugh, JE (1975) DNA modification mechanisms and gene activity during development. Science 187, 226232.
53Jenuwein, T (2006) The epigenetic magic of histone lysine methylation. FEBS J 273, 31213135.
54Mudd, SH & Poole, JR (1975) Labile methyl balances for normal humans on various dietary regimens. Metabolism 24, 721735.
55Stead, LM, Brosnan, JT, Brosnan, ME, et al. (2006) Is it time to reevaluate methyl balance in humans? Am J Clin Nutr 83, 510.
56Williams, KT, Garrow, TA & Schalinske, KL (2008) Type I diabetes leads to tissue-specific DNA hypomethylation in male rats. J Nutr 138, 20642069.
57Coughlin, SS, Calle, EE, Teras, LR, et al. (2004) Diabetes mellitus as a predictor of cancer mortality in a large cohort of US adults. Am J Epidemiol 159, 11601167.
58Hassan, MM, Hwang, LY, Hatten, CJ, et al. (2002) Risk factors for hepatocellular carcinoma: synergism of alcohol with viral hepatitis and diabetes mellitus. Hepatology 36, 12061213.
59Rousseau, MC, Parent, ME, Pollak, MN, et al. (2006) Diabetes mellitus and cancer risk in a population-based case–control study among men from Montreal, Canada. Int J Cancer 118, 21052109.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed