Skip to main content Accessibility help
×
Home

Medium-chain fatty acid nanoliposomes suppress body fat accumulation in mice

  • Wei-Lin Liu (a1), Wei Liu (a1), Cheng-Mei Liu (a1), Shui-Bing Yang (a1), Jian-Hua Liu (a1), Hui-Juan Zheng (a1) and Kun-Ming Su (a1)...

Abstract

Medium-chain fatty acids (MCFA) are widely used in diets for patients with obesity. To develop a delivery system for suppressing dietary fat accumulation into adipose tissue, MCFA were encapsulated in nanoliposomes (NL), which can overcome the drawbacks of MCFA and keep their properties unchanged. In the present study, crude liposomes were first produced by the thin-layer dispersion method, and then dynamic high-pressure microfluidisation (DHPM) and DHPM combined with freeze–thawing methods were used to prepare MCFA NL (NL-1 and NL-2, respectively). NL-1 exhibited smaller average size (77·6 (sd 4·3) nm), higher zeta potential ( − 40·8 (sd 1·7) mV) and entrapment efficiency (73·3 (sd 16·1) %) and better stability, while NL-2 showed narrower distribution (polydispersion index 0·193 (sd 0·016)). The body fat reduction property of NL-1 and NL-2 were evaluated by short-term (2 weeks) and long-term (6 weeks) experiments of mice. In contrast to the MCFA group, the NL groups had overcome the poor palatability of MCFA because the normal diet of mice was maintained. The body fat and total cholesterol (TCH) of NL-1 (1·54 (sd 0·30) g, P = 0·039 and 2·33 (sd 0·44) mmol/l, P = 0·021, respectively) and NL-2 (1·58 (sd 0·69) g, P = 0·041 and 2·29 (sd 0·38) mmol/l, P = 0·015, respectively) significantly decreased when compared with the control group (2·11 (sd 0·82) g and 2·99 (sd 0·48) mmol/l, respectively). The TAG concentration of the NL-1 group (0·55 (sd 0·14) mmol/l) was remarkably lower (P = 0·045) than the control group (0·94 (sd 0·37) mmol/l). No significant difference in weight and fat gain, TCH and TAG was detected between the MCFA NL and MCFA groups. Therefore, MCFA NL could be potential nutritional candidates for obesity to suppress body fat accumulation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Medium-chain fatty acid nanoliposomes suppress body fat accumulation in mice
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Medium-chain fatty acid nanoliposomes suppress body fat accumulation in mice
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Medium-chain fatty acid nanoliposomes suppress body fat accumulation in mice
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Professor C.-M. Liu, fax +86 791 8334509, email chengmeiliu@yahoo.com.cn

References

Hide All
1 Matsuo, T & Takeuchi, H (2004) Effects of structured medium- and long-chain triacylglycerols in diets with various levels of fat on body fat accumulation in rats. Br J Nutr 91, 219225.
2 Takeuchi, H, Sekine, S & Seto, A (2008) Medium-chain fatty acids – nutritional function and application to cooking oil. Lipid Technol 20, 912.
3 Jeukendrup, AE & Aldred, S (2004) Fat supplementation, health, and endurance performance. Nutrition 20, 678688.
4 Nagata, J, Kasai, M, Watanabe, S, et al. (2003) Effects of highly purified structured lipids containing medium-chain fatty acids and linoleic acid on lipid profiles in rats. Biosci Biotechnol Biochem 67, 19371943.
5 St-Onge, MP, Bourque, C, Jones, PJ, et al. (2003) Medium- versus long-chain triglycerides for 27 days increases fat oxidation and energy expenditure without resulting in changes in body composition in overweight women. Int J Obes Relat Metab Disord 27, 95102.
6 Aoyama, T, Nosaka, N & Kasai, M (2007) Research on the nutritional characteristics of medium-chain fatty acids. J Med Invest 54, 385388.
7 Marten, B, Pfeuffer, M & Schrezenmeir, J (2006) Medium-chain triglycerides. Int Dairy J 16, 13741382.
8 Zhang, Yh, Liu, YH, Wang, J, et al. (2010) Medium- and long-chain triacylglycerols reduce body fat and blood triacylglycerols in hypertriacylglycerolemic overweight but not obese, Chinese individuals. Lipids 45, 501510.
9 Constantinides, PP, Welzel, G, Ellens, H, et al. (1995) Water-in-oil microemulsions containing medium-chain fatty acids/salts: formulation and intestinal absorption enhancement evaluation. Pharm Res 13, 210215.
10 Lasic, DD & Papahadjopoulos, D (1995) Liposomes revisited. Science 267, 12751276.
11 Kuldarni, M, Greiser, U, O'Brien, T, et al. (2010) Liposomal gene delivery mediated by tissue-engineered scaffolds. Trends Biotechnol 28, 2836.
12 Kaasgaard, T & Andresen, TL (2010) Liposomal cancer therapy: exploiting tumor characteristics. Expert Opin Drug Deliv 7, 225243.
13 Tan, ML, Choong, PF & Dass, CR (2010) Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides 31, 184193.
14 Smith, AM, Jaime-Fonseca, MR, Grover, LM, et al. (2010) Alginate-loaded liposomes can protect encapsulated alkaline phosphatase functionality when exposed to gastric pH. J Agric Food Chem 58, 47194724.
15 Liu, W, Liu, JH, Xie, MY, et al. (2009) Characterization and high-pressure microfluidization-induced activation of polyphenoloxidase from Chinese pear (Pyrus pyrifolia Nakai). J Agric Food Chem 57, 53765380.
16 Liu, CM, Yang, SB, Liu, W, et al. (2010) Preparation and characterization of medium-chain fatty-acid liposomes by lyophilization. J Liposome Res 20, 183190.
17 Liu, W, Liu, WL, Liu, CM, et al. (2011) Medium-chain fatty acids nanoliposomes for easy energy supply. Nutrition 27, 700706.
18 Mayer, LD, Hope, MJ & Cullis, PR (1986) Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta 858, 161168.
19 Bangham, AD, Standish, MM & Watkins, JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13, 238252.
20 Liu, W, Liu, JH, Liu, CM, et al. (2009) Activation and conformational changes of mushroom polyphenoloxidase by high pressure microfluidization treatment. Innov Food Sci Emerg 10, 142147.
21 Sriwongsitanont, S & Ueno, M (2004) Effect of freeze–thawing and polyethylene glycol (PEG) lipid on fusion and fission of phospholipid vesicles. Chem Pharm Bull (Tokyo) 52, 641642.
22 Gruner, SM, Lenk, PR, Janoff, AS, et al. (1985) Novel multilayered lipid vesicles: comparison of physical characteristics of multilamellar liposomes and stable plurilamellar vesicles. Biochemistry 24, 28332842.
23 Nagayasu, A, Uchiyama, K & Kiwada, H (1999) The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Adv Drug Deliv Rev 40, 7587.
24 Ding, BM, Zhang, XM, Hayat, K, et al. (2011) Preparation, characterization and the stability of ferrous glycinate nanoliposomes. J Food Eng 102, 202208.
25 DeLuca, T, Kaszuba, M & Mattison, K (2006) Optimizing silicone emulsion stability using zeta potential. Am Lab 38, 1415.
26 Crommelin, DJ (1984) Influence of lipid composition and ionic strength on the physical stability of liposomes. J Pharm Sci 73, 15591563.
27 Liu, N & Park, HJ (2009) Chitosan-coated nanoliposome as vitamin E carrier. J Microencapsul 26, 235242.
28 Ohsawa, T, Miura, H & Harada, K (1985) Improvement of encapsulation efficiency of water-soluble drugs in liposomes formed by the freeze–thawing method. Chem Pharm Bull 33, 39453952.
29 Masson, G (1989) Advanced techniques for preparation and characterization of small unilamellar vesicles. Food Microstructure 8, 1114.
30 Labbe, C, Crowe, LM & Crowe, JH (1997) Stability of the lipid component of trout sperm plasma membrane during freeze–thawing. Cryobiology 34, 176182.
31 MacDonald, RC, Jones, FD & Qiu, RZ (1994) Fragmentation into small vesicles of dioleoylphosphatidylcholine bilayers during freezing and thawing. Biochim Biophys Acta 1191, 362370.
32 Geliebter, A, Torbay, N, Bracco, EF, et al. (1983) Overfeeding with medium-chain triglycerides diet results in diminished deposition of fat. Am J Clin Nutr 37, 14.
33 Max, JP, Bach, A, Pallier, E, et al. (1983) Effects of medium- and long-chain triacylglycerols on adipose tissue metabolism in the obese Zucker rat. Int J Obes 7, 161165.
34 Yost, TJ & Eckel, RH (1989) Hypocaloric feeding in obese women: metabolic effects of medium-chain triglyceride substitution. Am J Clin Nutr 49, 326330.
35 Lasekan, JB, Rivera, J, Hironen, MD, et al. (1992) Energy expenditure in rats maintained with intravenous or intragastric infusion of total parenteral nutrition solutions containing medium- or long-chain triglyceride emulsions. J Nutr 122, 14831492.
36 Krotkiewski, M (2001) Value of VLCD supplementation with medium chain triglycerides. Int J Relat Metab Disord 25, 13931400.
37 Papamandjaris, AA, MacDougall, DE & Jones, PJ (1998) Medium chain fatty acid metabolism and energy expenditure: obesity treatment implications. Life Sci 62, 12031215.
38 Nosaka, N, Maki, H, Suzuki, Y, et al. (2003) Effects of margarine containing medium-chain triacylglycerols on body fat reduction in humans. J Atheroscler Thromb 10, 290298.
39 Molimard, P, Le Quéré, JL & Spinner, HE (1997) Lipids and flavour of dairy products. Lipides 4, 301311.
40 Decuypere, JA & Dierick, NA (2003) The combined use of triacylglycerols containing medium-chain fatty acids and exogenous lipolytic enzymes as an alternative to in-feed antibiotics in piglets: concept, possibilities and limitations. An overview. Nutr Res Rev 16, 193210.
41 Asakura, L, Lottenberg, AM, Neves, MQ, et al. (2000) Dietary medium-chain triacylglycerol prevents the postprandial rise of plasma triacylglycerols but induces hypercholesterolemia in primary hypertriglyceridemic subjects. Am J Clin Nutr 71, 701705.
42 Roynette, CE, Rudkowska, I, Nakhasi, DK, et al. (2008) Structured medium and long chain triglycerides show short-term increases in fat oxidation, but no changes in adiposity in men. Nutr Metab Cardiovasc Dis 18, 298305.
43 Geelen, MJ, Schoots, WJ, Bijleveld, C, et al. (1995) Dietary medium-chain fatty acids raise and (n-3) polyunsaturated fatty acids lower hepatic triacylglycerol synthesis in rats. J Nutr 125, 24492456.
44 Xue, C, Liu, Y, Wang, J, et al. (2009) Consumption of medium- and long-chain triacylglycerols decreases body fat and blood triglyceride in Chinese hypertriglyceridemic subjects. Eur J Clin Nutr 63, 879886.
45 Glisic, S, Arrigo, P, Alavantic, D, et al. (2008) Lipoprotein lipase: a bioinformatics criterion for assessment of mutations as a risk factor for cardiovascular disease. Proteins 70, 855862.

Keywords

Medium-chain fatty acid nanoliposomes suppress body fat accumulation in mice

  • Wei-Lin Liu (a1), Wei Liu (a1), Cheng-Mei Liu (a1), Shui-Bing Yang (a1), Jian-Hua Liu (a1), Hui-Juan Zheng (a1) and Kun-Ming Su (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed