Skip to main content Accessibility help
×
Home

Maternal use of dietary supplements during pregnancy is not associated with coeliac disease in the offspring: The Environmental Determinants of Diabetes in the Young (TEDDY) study

  • Jimin Yang (a1), Roy N. Tamura (a1), Carin A. Aronsson (a2), Ulla M. Uusitalo (a1), Åke Lernmark (a2), Marian Rewers (a3), William A. Hagopian (a4), Jin-Xiong She (a5), Jorma Toppari (a6) (a7), Anette G. Ziegler (a8), Beena Akolkar (a9), Jeffrey P. Krischer (a1), Jill M. Norris (a10), Suvi M. Virtanen (a11) (a12) (a13), Daniel Agardh (a2) and The Environmental Determinants of Diabetes in The Young study group...

Abstract

Perinatal exposure to nutrients and dietary components may affect the risk for coeliac disease (CD). We investigated the association between maternal use of vitamin D, n-3 fatty acids (FA) and Fe supplements during pregnancy and risk for CD autoimmunity (CDA) and CD in the offspring. Children at increased genetic risk were prospectively followed from birth in The Environmental Determinants of Diabetes in the Young (TEDDY) study. CDA was defined as having persistently positive tissue transglutaminase autoantibodies (tTGA). Diagnosis of CD was either biopsy-confirmed or considered likely if having persistently elevated levels of tTGA>100 AU. Of 6627 enrolled children, 1136 developed CDA at a median 3·1 years of age (range 0·9–10) and 409 developed CD at a median 3·9 years of age (range 1·2–11). Use of supplements containing vitamin D, n-3 FA and Fe was recalled by 66, 17 and 94 % of mothers, respectively, at 3–4 months postpartum. The mean cumulative intake over the entire pregnancy was 2014 μg vitamin D (sd 2045 μg), 111 g n-3 FA (sd 303 g) and 8806 mg Fe (sd 7017 mg). After adjusting for country, child’s human leucocyte antigen genotype, sex, family history of CD, any breast-feeding duration and household crowding, Cox’s proportional hazard ratios did not suggest a statistically significant association between the intake of vitamin D, n-3 FA or Fe, and risk for CDA or CD. Dietary supplementation during pregnancy may help boost nutrient intake, but it is not likely to modify the risk for the disease in the offspring.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Maternal use of dietary supplements during pregnancy is not associated with coeliac disease in the offspring: The Environmental Determinants of Diabetes in the Young (TEDDY) study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Maternal use of dietary supplements during pregnancy is not associated with coeliac disease in the offspring: The Environmental Determinants of Diabetes in the Young (TEDDY) study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Maternal use of dietary supplements during pregnancy is not associated with coeliac disease in the offspring: The Environmental Determinants of Diabetes in the Young (TEDDY) study
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: D. Agardh, fax +46 40 391 919, email daniel.agardh@med.lu.se

Footnotes

Hide All

Members of the Environmental Determinants of Diabetes in the Young study group are listed in the online Supplementary Table S3.

Footnotes

References

Hide All
1. Lebwohl, B, Ludvigsson, JF & Green, PHR (2015) Celiac disease and non-celiac gluten sensitivity. BMJ 351, h4347.
2. Assa, A, Vong, L, Pinnell, LJ, et al. (2014) Vitamin D deficiency promotes epithelial barrier dysfunction and intestinal inflammation. J Infect Dis 210, 12961305.
3. Cantorna, MT, McDaniel, K, Bora, S, et al. (2014) Vitamin D, immune regulation, the microbiota, and inflammatory bowel disease. Exp Biol Med (Maywood) 239, 15241530.
4. Abreu-Delgado, Y, Isidro, RA, Torres, EA, et al. (2016) Serum vitamin D and colonic vitamin D receptor in inflammatory bowel disease. World J Gastroenterol 22, 35813591.
5. Alvarez-Curto, E & Milligan, G (2016) Metabolism meets immunity: the role of free fatty acid receptors in the immune system. Biochem Pharmacol 114, 313.
6. Jenmalm, MC & Duchén, K (2013) Timing of allergy-preventive and immunomodulatory dietary interventions – are prenatal, perinatal or postnatal strategies optimal? Clin Exp Allergy 43, 273278.
7. Iwami, D, Nonomura, K, Shirasugi, N, et al. (2011) Immunomodulatory effects of eicosapentaenoic acid through induction of regulatory T cells. Int Immunopharmacol 11, 384389.
8. Zimmermann, MB, Chassard, C, Rohner, F, et al. (2010) The effects of iron fortification on the gut microbiota in African children: a randomized controlled trial in Côte d’Ivoire. Am J Clin Nutr 92, 14061415.
9. Dostal, A, Chassard, C, Hilty, FM, et al. (2012) Iron depletion and repletion with ferrous sulfate or electrolytic iron modifies the composition and metabolic activity of the gut microbiota in rats. J Nutr 142, 271277.
10. Størdal, K, Haugen, M, Brantsæter, AL, et al. (2014) Association between maternal iron supplementation during pregnancy and risk of celiac disease in children. Clin Gastroenterol Hepatol 12, 624631.e2.
11. Liu, E, Lee, H-S, Aronsson, CA, et al. (2014) Risk of pediatric celiac disease according to HLA haplotype and country. N Engl J Med 371, 4249.
12. Hagopian, WA, Lernmark, A, Rewers, MJ, et al. (2006) TEDDY – The Environmental Determinants of Diabetes in the Young: an observational clinical trial. Ann N Y Acad Sci 1079, 320326.
13. The TEDDY Study Group (2007) The Environmental Determinants of Diabetes in the Young (TEDDY) study: study design. Pediatr Diabetes 8, 286298.
14. Vehik, K, Fiske, SW, Logan, CA, et al. (2013) Methods, quality control and specimen management in an international multicentre investigation of type 1 diabetes: TEDDY. Diabetes Metab Res Rev 29, 557567.
15. Aronsson, CA, Lee, H-S, Liu, E, et al. (2015) Age at gluten introduction and risk of celiac disease. Pediatrics 135, 239245.
16. Moyers, S, Richesson, R & Krischer, J (2008) Trans-atlantic data harmonization in the classification of medicines and dietary supplements: a challenge for epidemiologic study and clinical research. Int J Med Inform 77, 5867.
17. Lindehammer, SR, Bjorck, S, Lynch, K, et al. (2011) Early human pregnancy serum cytokine levels predict autoimmunity in offspring. Autoimmunity 44, 445452.
18. Kaiser, L & Allen, LH (2008) Position of the American dietetic association: nutrition and lifestyle for a healthy pregnancy outcome. J Am Diet Assoc 108, 553561.
19. Amarasekera, M, Prescott, SL & Palmer, DJ (2013) Nutrition in early life, immune-programming and allergies: the role of epigenetics. Asian Pac J Allergy Immunol 31, 175182.
20. Palmer, AC (2011) Nutritionally mediated programming of the developing immune system. Adv Nutr 2, 377395.
21. Aronsson, CA, Vehik, K, Yang, J, et al. (2013) Use of dietary supplements in pregnant women in relation to sociodemographic factors – a report from The Environmental Determinants of Diabetes in the Young (TEDDY) study. Public Health Nutr 16, 13901402.
22. National Institute for Health and Welfare, National Nutrition Council (2016) Eating Together: Food Recommendations for Families with Children. KIDE 28. Tampere, Finland: Juvenes Print (Suomen Yliopistopaino Oy).
23. Uusitalo, U, Lee, H-S, Aronsson, CA, et al. (2015) Gluten consumption during late pregnancy and risk of celiac disease in the offspring: the TEDDY birth cohort. Am J Clin Nutr 102, 12161221.
24. Brantsæter, AL, Haugen, M, Hagve, TA, et al. (2007) Self-reported dietary supplement use is confirmed by biological markers in the Norwegian Mother and Child Cohort Study (MoBa). Ann Nutr Metab 51, 146154.

Keywords

Type Description Title
WORD
Supplementary materials

Yang supplementary material
Table S1

 Word (18 KB)
18 KB
WORD
Supplementary materials

Yang supplementary material
Table S2

 Word (17 KB)
17 KB
WORD
Supplementary materials

Yang supplementary material
Table S3

 Word (24 KB)
24 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed