Skip to main content Accessibility help
×
Home

Maternal PUFA status and offspring allergic diseases up to the age of 18 months

  • Ya-Mei Yu (a1), Yiong-Huak Chan (a2), Philip C. Calder (a3) (a4) (a5), Antony Hardjojo (a1), Shu-E Soh (a1) (a6), Ai Lin Lim (a7), Helena L. Fisk (a3), Oon Hoe Teoh (a8), Anne Goh (a8), Seang-Mei Saw (a6), Kenneth Kwek (a8), Peter D. Gluckman (a7) (a9), Keith M. Godfrey (a3) (a4) (a10), Yap-Seng Chong (a7) (a11), Lynette Pei-Chi Shek (a1) (a7), An Pan (a6), Mary Foong Fong Chong (a1) (a7) (a12) and Hugo P. S. van Bever (a1)...

Abstract

Studies have suggested that maternal PUFA status during pregnancy may influence early childhood allergic diseases, although findings are inconsistent. We examined the relationship between maternal PUFA status and risk of allergic diseases in early childhood in an Asian cohort. Maternal plasma samples from the Growing Up in Singapore Towards Healthy Outcomes mother–offspring cohort were assayed at 26–28 weeks of gestation for relative abundance of PUFA. Offspring (n 960) were followed up from 3 weeks to 18 months of age, and clinical outcomes of potential allergic diseases (rhinitis, eczema and wheezing) were assessed by repeated questionnaires. Skin prick testing (SPT) was also performed at the age of 18 months. Any allergic disease with positive SPT was defined as having any one of the clinical outcomes plus a positive SPT. The prevalence of a positive SPT, rhinitis, eczema, wheezing and any allergic disease with positive SPT was 14·1 % (103/728), 26·5 % (214/808), 17·6 % (147/833), 10·9 % (94/859) and 9·4 % (62/657), respectively. After adjustment for confounders, maternal total n-3, n-6 PUFA status and the n-6:n-3 PUFA ratio were not significantly associated with offspring rhinitis, eczema, wheezing, a positive SPT and having any allergic disease with positive SPT in the offspring (P>0·01 for all). A weak trend of higher maternal n-3 PUFA being associated with higher risk of allergic diseases with positive SPT in offspring was observed. These findings do not support the hypothesis that the risk of early childhood allergic diseases is modified by variation in maternal n-3 and n-6 PUFA status during pregnancy in an Asian population.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Maternal PUFA status and offspring allergic diseases up to the age of 18 months
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Maternal PUFA status and offspring allergic diseases up to the age of 18 months
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Maternal PUFA status and offspring allergic diseases up to the age of 18 months
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: M. F. F. Chong, fax +65 6774 7134, email mary_chong@sics.a-star.edu.sg

References

Hide All
1 Pawankar, R, Canonica, GW, Holgate, ST, et al. (2004) World Allergy Organization (WAO) White Book on Allergy. Milwaukee, WI: WAO.
2 Zheng, T, Yu, J, Oh, MH, et al. (2011) The atopic march: progression from atopic dermatitis to allergic rhinitis and asthma. Allergy Asthma Immunol Res 3, 6773.
3 Warner, JA, Jones, CA, Jones, AC, et al. (2000) Prenatal origins of allergic disease. J Allergy Clin Immunol 105, 493498.
4 Henderson, AJ & Warner, JO (2012) Fetal origins of asthma. Semin Fetal Neonatal Med 17, 8291.
5 Prescott, SL (2013) Early-life environmental determinants of allergic diseases and the wider pandemic of inflammatory noncommunicable diseases. J Allergy Clin Immunol 131, 2330.
6 Black, PN & Sharpe, S (1997) Dietary fat and asthma: is there a connection? Eur Respir J 10, 612.
7 Herz, U & Petschow, B (2005) Perinatal events affecting the onset of allergic diseases. Curr Drug Targets Inflamm Allergy 4, 523529.
8 Healy, DA, Wallace, FA, Miles, EA, et al. (2000) Effect of low-to-moderate amounts of dietary fish oil on neutrophil lipid composition and function. Lipids 35, 763768.
9 Calder, PC (2003) n-3 Polyunsaturated fatty acids and inflammation: from molecular biology to the clinic. Lipids 38, 343352.
10 Stulnig, TM (2003) Immunomodulation by polyunsaturated fatty acids: mechanisms and effects. Int Arch Allergy Immunol 132, 310321.
11 van den Elsen, LW, van Esch, BC, Hofman, GA, et al. (2013) Dietary long chain n-3 polyunsaturated fatty acids prevent allergic sensitization to cow's milk protein in mice. Clin Exp Allergy 43, 798810.
12 Prescott, SL & Dunstan, JA (2007) Prenatal fatty acid status and immune development: the pathways and the evidence. Lipids 42, 801810.
13 Dunstan, JA, Mori, TA, Barden, A, et al. (2003) Fish oil supplementation in pregnancy modifies neonatal allergen-specific immune responses and clinical outcomes in infants at high risk of atopy: a randomized, controlled trial. J Allergy Clin Immunol 112, 11781184.
14 Olsen, SF, Østerdal, ML, Salvig, JD, et al. (2008) Fish oil intake compared with olive oil intake in late pregnancy and asthma in the offspring: 16 y of registry-based follow-up from a randomized controlled trial. Am J Clin Nutr 88, 167175.
15 Furuhjelm, C, Warstedt, K, Larsson, J, et al. (2009) Fish oil supplementation in pregnancy and lactation may decrease the risk of infant allergy. Acta Paediatr 98, 14611467.
16 Kremmyda, LS, Vlachava, M, Noakes, PS, et al. (2011) Atopy risk in infants and children in relation to early exposure to fish, oily fish, or long-chain omega-3 fatty acids: a systematic review. Clin Rev Allergy Immunol 41, 3666.
17 Maslova, E, Strøm, M, Oken, E, et al. (2013) Fish intake during pregnancy and the risk of child asthma and allergic rhinitis - longitudinal evidence from the Danish National Birth Cohort. Br J Nutr 110, 13131325.
18 Pike, KC, Calder, PC, Inskip, HM, et al. (2012) Maternal plasma phosphatidylcholine fatty acids and atopy and wheeze in the offspring at age of 6 years. Clin Dev Immunol 2012, 474613.
19 Notenboom, ML, Mommers, M, Jansen, EH, et al. (2011) Maternal fatty acid status in pregnancy and childhood atopic manifestations: KOALA Birth Cohort Study. Clin Exp Allergy 41, 407416.
20 Newson, RB, Shaheen, SO, Henderson, AJ, et al. (2004) Umbilical cord and maternal blood red cell fatty acids and early childhood wheezing and eczema. J Allergy Clin Immunol 114, 531537.
21 Yu, G & Björkstén, B (1998) Serum levels of phospholipid fatty acids in mothers and their babies in relation to allergic disease. Eur J Pediatr 157, 298303.
22 Soh, SE, Lee, SS, Hoon, SW, et al. (2012) The methodology of the GUSTO cohort study: a novel approach in studying pediatric allergy. Asia Pac Allergy 2, 144148.
23 Soh, SE, Tint, MT, Gluckman, PD, et al. (2013) Cohort profile: Growing Up in Singapore Towards healthy Outcomes (GUSTO) birth cohort study. Int J Epidemiol 43, 14011409.
24 Asher, MI, Keil, U, Anderson, HR, et al. (1995) International study of asthma and allergies in childhood (ISAAC): rationale and methods. Eur Respir J 8, 483491.
25 Mitra, A, Hannay, D, Kapur, A, et al. (2011) The natural history of acute upper respiratory tract infections in children. Prim Health Care Res Dev 12, 329334.
26 Henderson, J, Granell, R, Heron, J, et al. (2008) Associations of wheezing phenotypes in the first 6 years of life with atopy, lung function and airway responsiveness in mid-childhood. Thorax 63, 974980.
27 Calder, PC (2006) n-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 83, 1505S1519S.
28 Hodson, L, Skeaff, CM & Fielding, BA (2008) Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog Lipid Res 47, 348380.
29 van Dam, RM & Hunter, D (2013) Biochemical indicators of dietary intake. In Nutritional Epidemiology, 3rd ed., pp. 150212 [Willett, W, editor]. New York, NY: Oxford University Press.
30 Skeaff, CM, Hodson, L & McKenzie, JE (2006) Dietary-induced changes in fatty acid composition of human plasma, platelet, and erythrocyte lipids follow a similar time course. J Nutr 136, 565569.
31 Zuijdgeest-van Leeuwen, SD, Dagnelie, PC, Rietveld, T, et al. (1999) Incorporation and washout of orally administered n-3 fatty acid ethyl esters in different plasma lipid fractions. Br J Nutr 82, 481488.
32 Al, MD, van Houwelingen, AC, Kester, AD, et al. (1995) Maternal essential fatty acid patterns during normal pregnancy and their relationship to the neonatal essential fatty acid status. Br J Nutr 74, 5568.
33 Wijga, AH, van Houwelingen, AC, Kerkhof, M, et al. (2006) Breast milk fatty acids and allergic disease in preschool children: the Prevention and Incidence of Asthma and Mite Allergy birth cohort study. J Allergy Clin Immunol 117, 440447.

Keywords

Type Description Title
WORD
Supplementary materials

Yu supplementary material
Table S1

 Word (36 KB)
36 KB
WORD
Supplementary materials

Yu supplementary material
Table S2

 Word (72 KB)
72 KB
WORD
Supplementary materials

Yu supplementary material
Table S3

 Word (40 KB)
40 KB
WORD
Supplementary materials

Yu supplementary material
Table S4

 Word (60 KB)
60 KB
WORD
Supplementary materials

Yu supplementary material
Table S5

 Word (66 KB)
66 KB
WORD
Supplementary materials

Yu supplementary material
Table S6

 Word (110 KB)
110 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed